## Directional Chebyshev-type methods for solving equations

HTML articles powered by AMS MathViewer

- by I. K. Argyros, M. A. Hernández, S. Hilout and N. Romero PDF
- Math. Comp.
**84**(2015), 815-830 Request permission

## Abstract:

A semi-local convergence analysis for directional Chebyshev-type methods in $m$-variables is presented in this study. Our convergence analysis uses recurrent relations and Newton–Kantorovich-type hypotheses. Numerical examples are also provided to show the effectiveness of the proposed method.## References

- Heng-Bin An and Zhong-Zhi Bai,
*Directional secant method for nonlinear equations*, J. Comput. Appl. Math.**175**(2005), no. 2, 291–304. MR**2108576**, DOI 10.1016/j.cam.2004.05.013 - Ioannis K. Argyros,
*On the Newton-Kantorovich hypothesis for solving equations*, J. Comput. Appl. Math.**169**(2004), no. 2, 315–332. MR**2072881**, DOI 10.1016/j.cam.2004.01.029 - Ioannis K. Argyros,
*A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space*, J. Math. Anal. Appl.**298**(2004), no. 2, 374–397. MR**2086964**, DOI 10.1016/j.jmaa.2004.04.008 - Ioannis K. Argyros,
*Convergence and applications of Newton-type iterations*, Springer, New York, 2008. MR**2428779** - Ioannis K. Argyros,
*A semilocal convergence analysis for directional Newton methods*, Math. Comp.**80**(2011), no. 273, 327–343. MR**2728982**, DOI 10.1090/S0025-5718-2010-02398-1 - Ioannis K. Argyros, Yeol Je Cho, and Saïd Hilout,
*Numerical methods for equations and its applications*, CRC Press, Boca Raton, FL, 2012. MR**2964315** - I. K. Argyros, J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and S. Hilout,
*On the semilocal convergence of efficient Chebyshev-secant-type methods*, J. Comput. Appl. Math.**235**(2011), no. 10, 3195–3206. MR**2773304**, DOI 10.1016/j.cam.2011.01.005 - A. Ben-Israel, Y. Levin, Maple programs for directional Newton methods, are avaialable at ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws.
- J. A. Ezquerro and M. A. Hernández,
*An optimization of Chebyshev’s method*, J. Complexity**25**(2009), no. 4, 343–361. MR**2542035**, DOI 10.1016/j.jco.2009.04.001 - Yuri Levin and Adi Ben-Israel,
*Directional Newton methods in $n$ variables*, Math. Comp.**71**(2002), no. 237, 251–262. MR**1862998**, DOI 10.1090/S0025-5718-01-01332-1 - Gábor Lukács,
*The generalized inverse matrix and the surface-surface intersection problem*, Theory and practice of geometric modeling (Blaubeuren, 1988) Springer, Berlin, 1989, pp. 167–185. MR**1042329** - J. M. Ortega and W. C. Rheinboldt,
*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810** - Boris T. Polyak,
*Introduction to optimization*, Translations Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1987. Translated from the Russian; With a foreword by Dimitri P. Bertsekas. MR**1099605** - F.-A. Potra,
*On the convergence of a class of Newton-like methods*, Iterative solution of nonlinear systems of equations (Oberwolfach, 1982), Lecture Notes in Math., vol. 953, Springer, Berlin-New York, 1982, pp. 125–137. MR**678615** - Florian Alexandru Potra,
*Sharp error bounds for a class of Newton-like methods*, Libertas Math.**5**(1985), 71–84. MR**816258** - Homer F. Walker and Layne T. Watson,
*Least-change secant update methods for underdetermined systems*, SIAM J. Numer. Anal.**27**(1990), no. 5, 1227–1262. MR**1061128**, DOI 10.1137/0727071 - S. Weerakoon and T. G. I. Fernando,
*A variant of Newton’s method with accelerated third-order convergence*, Appl. Math. Lett.**13**(2000), no. 8, 87–93. MR**1791767**, DOI 10.1016/S0893-9659(00)00100-2

## Additional Information

**I. K. Argyros**- Affiliation: Department of Mathematics and Sciences, Cameron University, Lawton, Oklahoma 73505
- Email: iargyros@cameron.edu
**M. A. Hernández**- Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
- Email: mahernan@unirioja.es
**S. Hilout**- Affiliation: Laboratoire de Mathématiques et Applications and Département des Sciencesde la Terre et de l’Atmosphère Poitiers University, C.P. 8888 – Succursale Centreville Montréal, Québec, Canada
- Email: said.hilout@math.univ-poitiers.fr
**N. Romero**- Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
- Email: natalia.romero@unirioja.es
- Received by editor(s): September 6, 2011
- Received by editor(s) in revised form: July 17, 2013
- Published electronically: September 23, 2014
- Additional Notes: The research of the second, third and fourth authors was supported in part by the project MTM2008-01952/MTM of the Spanish Ministry of Science and Innovation and the project Colabora 2009/04 of the Riojan Autonomous Community.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp.
**84**(2015), 815-830 - MSC (2010): Primary 65H05, 65H10, 49M15
- DOI: https://doi.org/10.1090/S0025-5718-2014-02906-2
- MathSciNet review: 3290965