Directional Chebyshev-type methods for solving equations
HTML articles powered by AMS MathViewer
- by I. K. Argyros, M. A. Hernández, S. Hilout and N. Romero;
- Math. Comp. 84 (2015), 815-830
- DOI: https://doi.org/10.1090/S0025-5718-2014-02906-2
- Published electronically: September 23, 2014
- PDF | Request permission
Abstract:
A semi-local convergence analysis for directional Chebyshev-type methods in $m$-variables is presented in this study. Our convergence analysis uses recurrent relations and Newton–Kantorovich-type hypotheses. Numerical examples are also provided to show the effectiveness of the proposed method.References
- Heng-Bin An and Zhong-Zhi Bai, Directional secant method for nonlinear equations, J. Comput. Appl. Math. 175 (2005), no. 2, 291–304. MR 2108576, DOI 10.1016/j.cam.2004.05.013
- Ioannis K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), no. 2, 315–332. MR 2072881, DOI 10.1016/j.cam.2004.01.029
- Ioannis K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374–397. MR 2086964, DOI 10.1016/j.jmaa.2004.04.008
- Ioannis K. Argyros, Convergence and applications of Newton-type iterations, Springer, New York, 2008. MR 2428779
- Ioannis K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. 80 (2011), no. 273, 327–343. MR 2728982, DOI 10.1090/S0025-5718-2010-02398-1
- Ioannis K. Argyros, Yeol Je Cho, and Saïd Hilout, Numerical methods for equations and its applications, CRC Press, Boca Raton, FL, 2012. MR 2964315
- I. K. Argyros, J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and S. Hilout, On the semilocal convergence of efficient Chebyshev-secant-type methods, J. Comput. Appl. Math. 235 (2011), no. 10, 3195–3206. MR 2773304, DOI 10.1016/j.cam.2011.01.005
- A. Ben-Israel, Y. Levin, Maple programs for directional Newton methods, are avaialable at ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws.
- J. A. Ezquerro and M. A. Hernández, An optimization of Chebyshev’s method, J. Complexity 25 (2009), no. 4, 343–361. MR 2542035, DOI 10.1016/j.jco.2009.04.001
- Yuri Levin and Adi Ben-Israel, Directional Newton methods in $n$ variables, Math. Comp. 71 (2002), no. 237, 251–262. MR 1862998, DOI 10.1090/S0025-5718-01-01332-1
- Gábor Lukács, The generalized inverse matrix and the surface-surface intersection problem, Theory and practice of geometric modeling (Blaubeuren, 1988) Springer, Berlin, 1989, pp. 167–185. MR 1042329
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 273810
- Boris T. Polyak, Introduction to optimization, Translations Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1987. Translated from the Russian; With a foreword by Dimitri P. Bertsekas. MR 1099605
- F.-A. Potra, On the convergence of a class of Newton-like methods, Iterative solution of nonlinear systems of equations (Oberwolfach, 1982) Lecture Notes in Math., vol. 953, Springer, Berlin-New York, 1982, pp. 125–137. MR 678615
- Florian Alexandru Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71–84. MR 816258
- Homer F. Walker and Layne T. Watson, Least-change secant update methods for underdetermined systems, SIAM J. Numer. Anal. 27 (1990), no. 5, 1227–1262. MR 1061128, DOI 10.1137/0727071
- S. Weerakoon and T. G. I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87–93. MR 1791767, DOI 10.1016/S0893-9659(00)00100-2
Bibliographic Information
- I. K. Argyros
- Affiliation: Department of Mathematics and Sciences, Cameron University, Lawton, Oklahoma 73505
- Email: iargyros@cameron.edu
- M. A. Hernández
- Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
- Email: mahernan@unirioja.es
- S. Hilout
- Affiliation: Laboratoire de Mathématiques et Applications and Département des Sciencesde la Terre et de l’Atmosphère Poitiers University, C.P. 8888 – Succursale Centreville Montréal, Québec, Canada
- Email: said.hilout@math.univ-poitiers.fr
- N. Romero
- Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
- Email: natalia.romero@unirioja.es
- Received by editor(s): September 6, 2011
- Received by editor(s) in revised form: July 17, 2013
- Published electronically: September 23, 2014
- Additional Notes: The research of the second, third and fourth authors was supported in part by the project MTM2008-01952/MTM of the Spanish Ministry of Science and Innovation and the project Colabora 2009/04 of the Riojan Autonomous Community.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 815-830
- MSC (2010): Primary 65H05, 65H10, 49M15
- DOI: https://doi.org/10.1090/S0025-5718-2014-02906-2
- MathSciNet review: 3290965