## Adaptive finite element methods for the Stokes problem with discontinuous viscosity

HTML articles powered by AMS MathViewer

- by Andrea Bonito and Denis Devaud PDF
- Math. Comp.
**84**(2015), 2137-2162 Request permission

## Abstract:

Discontinuity in viscosities is of interest in many applications. Classical adaptive numerical methods perform under the restricting assumption that the discontinuities of the viscosity are captured by the initial partition. This excludes applications where the jump of the viscosity takes place across curves, manifolds or at a priori unknown positions. We present a novel estimate measuring the distortion of the viscosity in $L^{q}$ for a $q<\infty$, thereby allowing for any type of discontinuities. This estimate requires the velocity $\mathbf {u}$ of the Stokes system to satisfy the extra regularity assumption $\nabla \mathbf {u} \in L^{r}(\Omega )^{d\times d}$ for some $r>2$. We show that the latter holds on any bounded Lipschitz domain provided the data belongs to a smaller class than those required to obtain well-posedness. Based on this theory, we introduce adaptive finite element methods which approximate the solution of Stokes equations with possible discontinuous viscosities. We prove that these algorithms are quasi-optimal in terms of error compared to the number of cells. Finally, the performance of the adaptive algorithm is numerically illustrated on insightful examples.## References

- W. Bangerth, R. Hartmann, and G. Kanschat,
*deal.II—a general-purpose object-oriented finite element library*, ACM Trans. Math. Software**33**(2007), no. 4, Art. 24, 27. MR**2404402**, DOI 10.1145/1268776.1268779 - Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto,
*An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition*, SIAM J. Numer. Anal.**40**(2002), no. 4, 1207–1229. MR**1951892**, DOI 10.1137/S0036142901392134 - Peter Binev, Wolfgang Dahmen, and Ron DeVore,
*Adaptive finite element methods with convergence rates*, Numer. Math.**97**(2004), no. 2, 219–268. MR**2050077**, DOI 10.1007/s00211-003-0492-7 - Peter Binev, Wolfgang Dahmen, Ronald DeVore, and Pencho Petrushev,
*Approximation classes for adaptive methods*, Serdica Math. J.**28**(2002), no. 4, 391–416. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday. MR**1965238** - Peter Binev and Ronald DeVore,
*Fast computation in adaptive tree approximation*, Numer. Math.**97**(2004), no. 2, 193–217. MR**2050076**, DOI 10.1007/s00211-003-0493-6 - M. Š. Birman and M. Z. Solomjak,
*Piecewise polynomial approximations of functions of classes $W_{p}{}^{\alpha }$*, Mat. Sb. (N.S.)**73 (115)**(1967), 331–355 (Russian). MR**0217487** - Andrea Bonito, J. Manuel Cascón, Pedro Morin, and Ricardo H. Nochetto,
*AFEM for geometric PDE: the Laplace-Beltrami operator*, Analysis and numerics of partial differential equations, Springer INdAM Ser., vol. 4, Springer, Milan, 2013, pp. 257–306. MR**3051405**, DOI 10.1007/978-88-470-2592-9_{1}5 - Andrea Bonito, Ronald A. DeVore, and Ricardo H. Nochetto,
*Adaptive finite element methods for elliptic problems with discontinuous coefficients*, SIAM J. Numer. Anal.**51**(2013), no. 6, 3106–3134. MR**3129757**, DOI 10.1137/130905757 - Andrea Bonito, Jean-Luc Guermond, and Francky Luddens,
*Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains*, J. Math. Anal. Appl.**408**(2013), no. 2, 498–512. MR**3085047**, DOI 10.1016/j.jmaa.2013.06.018 - Andrea Bonito and Ricardo H. Nochetto,
*Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method*, SIAM J. Numer. Anal.**48**(2010), no. 2, 734–771. MR**2670003**, DOI 10.1137/08072838X - Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies, and Ronald DeVore,
*Tree approximation and optimal encoding*, Appl. Comput. Harmon. Anal.**11**(2001), no. 2, 192–226. MR**1848303**, DOI 10.1006/acha.2001.0336 - Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto,
*Convergence rates of AFEM with $H^{-1}$ data*, Found. Comput. Math.**12**(2012), no. 5, 671–718. MR**2970853**, DOI 10.1007/s10208-012-9120-1 - Stephan Dahlke, Wolfgang Dahmen, and Karsten Urban,
*Adaptive wavelet methods for saddle point problems—optimal convergence rates*, SIAM J. Numer. Anal.**40**(2002), no. 4, 1230–1262. MR**1951893**, DOI 10.1137/S003614290139233X - Ronald A. DeVore,
*Nonlinear approximation*, Acta numerica, 1998, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR**1689432**, DOI 10.1017/S0962492900002816 - Willy Dörfler,
*A convergent adaptive algorithm for Poisson’s equation*, SIAM J. Numer. Anal.**33**(1996), no. 3, 1106–1124. MR**1393904**, DOI 10.1137/0733054 - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5 - Jun Hu and Jinchao Xu,
*Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem*, J. Sci. Comput.**55**(2013), no. 1, 125–148. MR**3030706**, DOI 10.1007/s10915-012-9625-4 - F. Jochmann,
*An $H^s$-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions*, J. Math. Anal. Appl.**238**(1999), no. 2, 429–450. MR**1715492**, DOI 10.1006/jmaa.1999.6518 - Yaroslav Kondratyuk and Rob Stevenson,
*An optimal adaptive finite element method for the Stokes problem*, SIAM J. Numer. Anal.**46**(2008), no. 2, 747–775. MR**2383210**, DOI 10.1137/06066566X - V. Maz’ya and J. Rossmann,
*$L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains*, Math. Nachr.**280**(2007), no. 7, 751–793. MR**2321139**, DOI 10.1002/mana.200610513 - Norman G. Meyers,
*An $L^{p}$e-estimate for the gradient of solutions of second order elliptic divergence equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**17**(1963), 189–206. MR**159110** - Rob Stevenson,
*Optimality of a standard adaptive finite element method*, Found. Comput. Math.**7**(2007), no. 2, 245–269. MR**2324418**, DOI 10.1007/s10208-005-0183-0 - Rob Stevenson,
*The completion of locally refined simplicial partitions created by bisection*, Math. Comp.**77**(2008), no. 261, 227–241. MR**2353951**, DOI 10.1090/S0025-5718-07-01959-X - Luc Tartar,
*An introduction to Sobolev spaces and interpolation spaces*, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR**2328004** - R. Verfürth,
*A posteriori error estimators for the Stokes equations*, Numer. Math.**55**(1989), no. 3, 309–325. MR**993474**, DOI 10.1007/BF01390056

## Additional Information

**Andrea Bonito**- Affiliation: Department of Mathematics, Texas A&M University, TAMU 3368, College Station, Texas 77843
- MR Author ID: 783728
- Email: bonito@math.tamu.edu
**Denis Devaud**- Affiliation: EPFL SMA, CH-1015, Lausanne, Switzerland
- MR Author ID: 1042036
- Email: denis.devaud@epfl.ch
- Received by editor(s): June 23, 2013
- Received by editor(s) in revised form: December 1, 2013, and January 10, 2014
- Published electronically: March 10, 2015
- Additional Notes: The first author was partially supported by NSF grant DMS-1254618 and ONR grant N000141110712
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**84**(2015), 2137-2162 - MSC (2010): Primary 41A35, 65N15, 65N30; Secondary 65Y20, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-2015-02935-4
- MathSciNet review: 3356022