Convergence of adaptive finite element methods for a nonconvex double-well minimization problem
HTML articles powered by AMS MathViewer
- by Carsten Carstensen and Georg Dolzmann;
- Math. Comp. 84 (2015), 2111-2135
- DOI: https://doi.org/10.1090/S0025-5718-2015-02947-0
- Published electronically: February 26, 2015
- PDF | Request permission
Abstract:
This paper focuses on the numerical analysis of a nonconvex variational problem which is related to the relaxation of the two-well problem in the analysis of solid-solid phase transitions with incompatible wells and dependence on the linear strain in two dimensions. The proposed approach is based on the search for minimizers for this functional in finite element spaces with Courant elements and with successive loops of the form SOLVE, ESTIMATE, MARK, and REFINE. Convergence of the total energy of the approximating deformations and strong convergence of all except one component of the corresponding deformation gradients is established. The proof relies on the decomposition of the energy density into a convex part and a null-Lagrangian. The key ingredient is the fact that the convex part satisfies a convexity property which is stronger than degenerate convexity and weaker than uniform convexity. Moreover, an estimator reduction property for the stresses associated to the convex part in the energy is established.References
- J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), no. 1, 13–52. MR 906132, DOI 10.1007/BF00281246
- J. M. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem., Phil. Trans. R. Soc. Lond. A 338 (1992), 389–450.
- John M. Ball, Bernd Kirchheim, and Jan Kristensen, Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations 11 (2000), no. 4, 333–359. MR 1808126, DOI 10.1007/s005260000041
- S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe, Effective relaxation for microstructure simulations: algorithms and applications, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 48-51, 5143–5175. MR 2103046, DOI 10.1016/j.cma.2003.12.065
- Sören Bartels, Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal. 38 (2004), no. 5, 811–820. MR 2104430, DOI 10.1051/m2an:2004040
- Sören Bartels, Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal. 43 (2005), no. 1, 363–385. MR 2177149, DOI 10.1137/S0036142903428840
- Sören Bartels and Tomáš Roubíček, Linear-programming approach to nonconvex variational problems, Numer. Math. 99 (2004), no. 2, 251–287. MR 2107432, DOI 10.1007/s00211-004-0549-2
- C. Carstensen, Nonconvex energy minimization and relaxation in computational material science, IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (Stuttgart, 2001) Solid Mech. Appl., vol. 108, Kluwer Acad. Publ., Dordrecht, 2003, pp. 3–20. MR 1991320, DOI 10.1007/978-94-017-0297-3_{1}
- C. Carstensen and K. Jochimsen, Adaptive finite element methods for microstructures? Numerical experiments for a 2-well benchmark, Computing 71 (2003), no. 2, 175–204. MR 2016254, DOI 10.1007/s00607-003-0027-1
- Carsten Carstensen and Petr Plecháč, Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal. 37 (2000), no. 6, 2061–2081. MR 1766859, DOI 10.1137/S0036142998337697
- Carsten Carstensen, Convergence of an adaptive FEM for a class of degenerate convex minimization problems, IMA J. Numer. Anal. 28 (2008), no. 3, 423–439. MR 2433207, DOI 10.1093/imanum/drm034
- Carsten Carstensen and Stefan Müller, Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal. 34 (2002), no. 2, 495–509. MR 1951785, DOI 10.1137/S0036141001396436
- Carsten Carstensen and Petr Plecháč, Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp. 66 (1997), no. 219, 997–1026. MR 1415798, DOI 10.1090/S0025-5718-97-00849-1
- Carsten Carstensen and Tomáš Roubíček, Numerical approximation of Young measures in non-convex variational problems, Numer. Math. 84 (2000), no. 3, 395–415. MR 1738162, DOI 10.1007/s002110050003
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- M. Chipot, Numerical analysis of oscillations in nonconvex problems, Numer. Math. 59 (1991), no. 8, 747–767. MR 1128031, DOI 10.1007/BF01385808
- M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, Variations of domain and free-boundary problems in solid mechanics (Paris, 1997) Solid Mech. Appl., vol. 66, Kluwer Acad. Publ., Dordrecht, 1999, pp. 317–325. MR 1672262, DOI 10.1007/978-94-011-4738-5_{3}8
- Michel Chipot and David Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988), no. 3, 237–277. MR 955934, DOI 10.1007/BF00251759
- Philippe G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. MR 1930132, DOI 10.1137/1.9780898719208
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- S. Conti, A. DeSimone, and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: a numerical study, J. Mech. Phys. Solids 50 (2002), no. 7, 1431–1451. MR 1903720, DOI 10.1016/S0022-5096(01)00120-X
- Bernard Dacorogna, Direct methods in the calculus of variations, 2nd ed., Applied Mathematical Sciences, vol. 78, Springer, New York, 2008. MR 2361288
- Antonio DeSimone and Georg Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of $\rm SO(3)$-invariant energies, Arch. Ration. Mech. Anal. 161 (2002), no. 3, 181–204. MR 1894590, DOI 10.1007/s002050100174
- Georg Dolzmann, Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal. 36 (1999), no. 5, 1621–1635. MR 1706747, DOI 10.1137/S0036142997325581
- Georg Dolzmann, Variational methods for crystalline microstructure—analysis and computation, Lecture Notes in Mathematics, vol. 1803, Springer-Verlag, Berlin, 2003. MR 1954274, DOI 10.1007/b10191
- Georg Dolzmann, Jan Kristensen, and Kewei Zhang, BMO and uniform estimates for multi-well problems, Manuscripta Math. 140 (2013), no. 1-2, 83–114. MR 3016485, DOI 10.1007/s00229-012-0531-8
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- David Kinderlehrer and Pablo Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), no. 4, 329–365. MR 1120852, DOI 10.1007/BF00375279
- Dorothee Knees, Global stress regularity of convex and some nonconvex variational problems, Ann. Mat. Pura Appl. (4) 187 (2008), no. 1, 157–184. MR 2346014, DOI 10.1007/s10231-006-0039-5
- R. J. Knops and C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86 (1984), no. 3, 233–249. MR 751508, DOI 10.1007/BF00281557
- R. V. Kohn, The relaxation of a double-well energy, Contin. Mech. Thermodyn. 3 (1991), no. 3, 193–236. MR 1122017, DOI 10.1007/BF01135336
- Jan Kristensen, On the non-locality of quasiconvexity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 16 (1999), no. 1, 1–13 (English, with English and French summaries). MR 1668552, DOI 10.1016/S0294-1449(99)80006-7
- Martin Kružík and Tomáš Roubíček, Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation, Numer. Funct. Anal. Optim. 20 (1999), no. 5-6, 511–530. MR 1704958, DOI 10.1080/01630569908816908
- Hervé Le Dret and Annie Raoult, The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 6, 1179–1192. MR 1362998, DOI 10.1017/S0308210500030456
- K. A. Lurie and A. V. Cherkaev, On a certain variational problem of phase equilibrium, Material instabilities in continuum mechanics (Edinburgh, 1985–1986) Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 257–268. MR 970529
- Mitchell Luskin, On the computation of crystalline microstructure, Acta numerica, 1996, Acta Numer., vol. 5, Cambridge Univ. Press, Cambridge, 1996, pp. 191–257. MR 1624603, DOI 10.1017/S0962492900002658
- Norman G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965), 125–149. MR 188838, DOI 10.1090/S0002-9947-1965-0188838-3
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511
- Stefan Müller, Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85–210. MR 1731640, DOI 10.1007/BFb0092670
- S. Müller and V. Šverák, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 4, 393–422. MR 1728376, DOI 10.1007/s100970050012
- Allen C. Pipkin, Elastic materials with two preferred states, Quart. J. Mech. Appl. Math. 44 (1991), no. 1, 1–15. MR 1093392, DOI 10.1093/qjmam/44.1.1
- Tomáš Roubíček, Relaxation in optimization theory and variational calculus, De Gruyter Series in Nonlinear Analysis and Applications, vol. 4, Walter de Gruyter & Co., Berlin, 1997. MR 1458067, DOI 10.1515/9783110811919
- Tomáš Roubíček, Numerical techniques in relaxed optimization problems, Robust optimization-directed design, Nonconvex Optim. Appl., vol. 81, Springer, New York, 2006, pp. 157–178. MR 2187728, DOI 10.1007/0-387-28654-3_{8}
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- G. A. Seregin, The uniqueness of solutions of some variational problems of the theory of phase equilibrium in solid bodies, J. Math. Sci. 80 (1996), no. 6, 2333–2348. Nonlinear boundary-value problems and some questions of function theory. MR 1420682, DOI 10.1007/BF02362391
- G. A. Seregin, Variational problem on the phase equilibrium of an elastic body., St. Petersbg. Math. J. 10 (1998), 477–506.
- R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems, Advances in adaptive computational methods in mechanics (Cachan, 1997) Stud. Appl. Mech., vol. 47, Elsevier Sci. B. V., Amsterdam, 1998, pp. 257–274. MR 1643051, DOI 10.1016/S0922-5382(98)80014-7
- L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1969. Foreword by Wendell H. Fleming. MR 259704
Bibliographic Information
- Carsten Carstensen
- Affiliation: Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany — and — Department of Computational Science and Engineering, Yonsei University, Seoul, Korea
- Georg Dolzmann
- Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
- Received by editor(s): December 21, 2012
- Received by editor(s) in revised form: September 21, 2013
- Published electronically: February 26, 2015
- Additional Notes: This work was partially supported by the Deutsche Forschungsgemeinschaft through the Forschergruppe 797 “Analysis and computation of microstructure in finite plasticity”, projects CA 151/19 (first author) and DO 633/2 (second author). The work was finalized while the first author enjoyed the kind hospitality of the Oxford Centre for Nonlinear PDE.
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2111-2135
- MSC (2010): Primary 65N12, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2015-02947-0
- MathSciNet review: 3356021