Kinetic schemes on staggered grids for barotropic Euler models: entropy-stability analysis
HTML articles powered by AMS MathViewer
- by Florent Berthelin, Thierry Goudon and Sebastian Minjeaud;
- Math. Comp. 84 (2015), 2221-2262
- DOI: https://doi.org/10.1090/S0025-5718-2015-02957-3
- Published electronically: March 18, 2015
- PDF | Request permission
Abstract:
We introduce, in the one-dimensional framework, a new scheme of finite volume type for barotropic Euler equations. The numerical unknowns, namely densities and velocities, are defined on staggered grids. The numerical fluxes are defined by using the framework of kinetic schemes. We can consider general (convex) pressure laws. We justify that the density remains non-negative and the total physical entropy does not increase, under suitable stability conditions. Performances of the scheme are illustrated through a set of numerical experiments.References
- A. Arakawa and V. R. Lamb, A potential enstrophy and energy conserving scheme for the shallow-water equations, Monthly Weather Rev., 109 (1981), 18–36.
- Sylvie Benzoni-Gavage and Denis Serre, Multidimensional hyperbolic partial differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. First-order systems and applications. MR 2284507
- F. Berthelin, T. Goudon, and S. Minjeaud. Multifluid flows: a kinetic approach. Technical report, Inria, 2013. Work in progress.
- F. Berthelin, T. Goudon, and S. Minjeaud, Consistency analysis of a 1D finite volume scheme for barotropic Euler models, in Finite Volumes for Complex Applications VII, Berlin, Germany, Proceedings in Mathematics, Springer, 2014. See http://hal.archives-ouvertes.fr/hal-00961615.
- F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys. 95 (1999), no. 1-2, 113–170. MR 1705583, DOI 10.1023/A:1004525427365
- François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209, DOI 10.1007/b93802
- Christophe Chalons and Jean-François Coulombel, Relaxation approximation of the Euler equations, J. Math. Anal. Appl. 348 (2008), no. 2, 872–893. MR 2446042, DOI 10.1016/j.jmaa.2008.07.034
- K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), no. 2, 373–392. MR 430536, DOI 10.1512/iumj.1977.26.26029
- F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal. 28 (1991), no. 1, 26–42 (English, with French summary). MR 1083323, DOI 10.1137/0728002
- S. M. Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows, in AIAA 24th Aerospace Science Meeting, Jan 6-9, 1986, Nevada, USA, 1986. AIAA paper 86-0275.
- S. M. Deshpande, On the Maxwellian distribution, symmetric form and entropy conservation for the Euler equations, Technical report, NASA Langley Research Centre, Hampton, VA, 1986. NASA TP2613.
- R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), no. 1, 27–70. MR 684413, DOI 10.1007/BF00251724
- Xia Xi Ding, Gui Qiang Chen, and Pei Zhu Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys. 121 (1989), no. 1, 63–84. MR 985615
- François Dubois and Philippe LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations 71 (1988), no. 1, 93–122. MR 922200, DOI 10.1016/0022-0396(88)90040-X
- T. Gallouët, R. Herbin, and J.-C. Latché, Kinetic energy control in explicit finite volume discretizations of the incompressible and compressible Navier-Stokes equations, Int. J. Finite Vol. 7 (2010), no. 2, 6. MR 2753585
- L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta, and J.-C. Latché, Staggered discretizations, pressure correction schemes and all speed barotropic flows, Finite volumes for complex applications VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., vol. 4, Springer, Heidelberg, 2011, pp. 839–855. MR 2882362, DOI 10.1007/978-3-642-20671-9_{8}6
- Jeffrey Haack, Shi Jin, and Jian-Guo Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations, Commun. Comput. Phys. 12 (2012), no. 4, 955–980. MR 2913446, DOI 10.4208/cicp.250910.131011a
- Raphaèle Herbin, Walid Kheriji, and Jean-Claude Latche, Staggered schemes for all speed flows, Congrès National de Mathématiques Appliquées et Industrielles, ESAIM Proc., vol. 35, EDP Sci., Les Ulis, 2011, pp. 122–150. MR 3040778, DOI 10.1051/proc/201235008
- R. Herbin, J.-C. Latché, and T. T. Nguyen, Consistent explicit staggered schemes for compressible flows; part I: the barotropic Euler equations. Technical report, LATP, Univ. Aix-Marseille & CNRS, 2013.
- R. Herbin, J.-C. Latché, and T. T. Nguyen, Explicit staggered schemes for the compressible Euler equations. ESAIM:Proc. 40( 2013), 83–102.
- Olivier Heuzé, Stéphane Jaouen, and Hervé Jourdren, Dissipative issue of high-order shock capturing schemes with non-convex equations of state, J. Comput. Phys. 228 (2009), no. 3, 833–860. MR 2477791, DOI 10.1016/j.jcp.2008.10.005
- J. Jena and V. D. Sharma, Self-similar shocks in a dusty gas, Internat. J. Non-Linear Mech. 34 (1999), no. 2, 313–327. MR 1658934, DOI 10.1016/S0020-7462(98)00035-3
- Shmuel Kaniel, Approximation of the hydrodynamic equations by a transport process, Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979) Lecture Notes in Math., vol. 771, Springer, Berlin, 1980, pp. 272–286. MR 566002
- Alexander Kurganov, Guergana Petrova, and Bojan Popov, Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput. 29 (2007), no. 6, 2381–2401. MR 2357619, DOI 10.1137/040614189
- A. Y. le Roux, Numerical stability for some equations of gas dynamics, Math. Comp. 37 (1981), no. 156, 307–320. MR 628697, DOI 10.1090/S0025-5718-1981-0628697-8
- Meng-Sing Liou, A sequel to AUSM: AUSM$^+$, J. Comput. Phys. 129 (1996), no. 2, 364–382. MR 1426276, DOI 10.1006/jcph.1996.0256
- Meng-Sing Liou and Christopher J. Steffen Jr., A new flux splitting scheme, J. Comput. Phys. 107 (1993), no. 1, 23–39. MR 1226371, DOI 10.1006/jcph.1993.1122
- B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions, SIAM J. Numer. Anal. 29 (1992), no. 1, 1–19 (English, with French summary). MR 1149081, DOI 10.1137/0729001
- Benoît Perthame, Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 21, Oxford University Press, Oxford, 2002. MR 2064166
- D. I. Pullin, Direct simulation methods for compressible gas flow. J. Comput. Phys. 34 (1980), 231–244.
- Laure Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, vol. 1971, Springer-Verlag, Berlin, 2009. MR 2683475, DOI 10.1007/978-3-540-92847-8
- H. Sanders and K. H. Prendergast, On the origin of the 3 kiloparsec arm, Astrophys. J. 188 (1974), 489–500.
- D. Serre. Systèmes de lois de conservation. Diderot Ed., 1996.
- Eleuterio F. Toro, Riemann solvers and numerical methods for fluid dynamics, 3rd ed., Springer-Verlag, Berlin, 2009. A practical introduction. MR 2731357, DOI 10.1007/b79761
- J. Von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21 (1950), 232–237. MR 37613
- Burton Wendroff, The Riemann problem for materials with nonconvex equations of state. I. Isentropic flow, J. Math. Anal. Appl. 38 (1972), 454–466. MR 328387, DOI 10.1016/0022-247X(72)90103-5
- Paul Woodward and Phillip Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984), no. 1, 115–173. MR 748569, DOI 10.1016/0021-9991(84)90142-6
Bibliographic Information
- Florent Berthelin
- Affiliation: Inria, Sophia Antipolis Méditerranée Research Centre, Project COFFEE & Univ. Nice Sophia Antipolis, CNRS, Labo J. A. Dieudonné, UMR 7351 Parc Valrose, F-06108 Nice, France
- Email: Florent.Berthelin@unice.fr
- Thierry Goudon
- Affiliation: Inria, Sophia Antipolis Méditerranée Research Centre, Project COFFEE & Univ. Nice Sophia Antipolis, CNRS, Labo J. A. Dieudonné, UMR 7351 Parc Valrose, F-06108 Nice, France
- MR Author ID: 617261
- Email: thierry.goudon@inria.fr
- Sebastian Minjeaud
- Affiliation: Inria, Sophia Antipolis Méditerranée Research Centre, Project CASTOR & Univ. Nice Sophia Antipolis, CNRS, Labo J. A. Dieudonné, UMR 7351 Parc Valrose, F-06108 Nice, France
- MR Author ID: 889818
- Email: minjeaud@unice.fr
- Received by editor(s): September 3, 2013
- Received by editor(s) in revised form: February 5, 2014
- Published electronically: March 18, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2221-2262
- MSC (2010): Primary 65M08; Secondary 35L05
- DOI: https://doi.org/10.1090/S0025-5718-2015-02957-3
- MathSciNet review: 3356025