## Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws

HTML articles powered by AMS MathViewer

- by Claus R. Goetz and Armin Iske PDF
- Math. Comp.
**85**(2016), 35-62 Request permission

## Abstract:

We study analytical properties of the Toro-Titarev solver for generalized Riemann problems (GRPs), which is the heart of the flux computation in ADER generalized Godunov schemes. In particular, we compare the Toro-Titarev solver with a local asymptotic expansion developed by LeFloch and Raviart. We show that for nonlinear scalar problems in 1D the Toro-Titarev solver reproduces the truncated Taylor series expansion of LeFloch-Raviart exactly, whereas for nonlinear systems the Toro-Titarev solver introduces an error whose size depends on the height of the jump in the initial data. Thereby, our analysis answers open questions concerning the justification of simplifying steps in the Toro-Titarev solver. We illustrate our results by giving the full analysis for a nonlinear $2$-by-$2$ system and numerical results for shallow water equations and a system from traffic flow.## References

- Terhemen Aboiyar, Emmanuil H. Georgoulis, and Armin Iske,
*Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction*, SIAM J. Sci. Comput.**32**(2010), no. 6, 3251–3277. MR**2746620**, DOI 10.1137/100792573 - A. Aw and M. Rascle,
*Resurrection of “second order” models of traffic flow*, SIAM J. Appl. Math.**60**(2000), no. 3, 916–938. MR**1750085**, DOI 10.1137/S0036139997332099 - Dinshaw S. Balsara and Chi-Wang Shu,
*Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy*, J. Comput. Phys.**160**(2000), no. 2, 405–452. MR**1763821**, DOI 10.1006/jcph.2000.6443 - Matania Ben-Artzi and Joseph Falcovitz,
*A second-order Godunov-type scheme for compressible fluid dynamics*, J. Comput. Phys.**55**(1984), no. 1, 1–32. MR**757422**, DOI 10.1016/0021-9991(84)90013-5 - Matania Ben-Artzi and Joseph Falcovitz,
*Generalized Riemann Problems in Computational Fluid Dynamics*, Cambridge University Press, Cambridge, 2003. - A. Bourgeade, Ph. LeFloch, and P.-A. Raviart,
*An asymptotic expansion for the solution of the generalized Riemann problem. II. Application to the equations of gas dynamics*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**6**(1989), no. 6, 437–480 (English, with French summary). MR**1035338** - Alberto Bressan,
*Hyperbolic systems of conservation laws*, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. MR**1816648** - C. E. Castro and E. F. Toro,
*Solvers for the high-order Riemann problem for hyperbolic balance laws*, J. Comput. Phys.**227**(2008), no. 4, 2481–2513. MR**2388072**, DOI 10.1016/j.jcp.2007.11.013 - Shouxin Chen, Xiaosen Han, and Hao Zhang,
*The generalized Riemann problem for first order quasilinear hyperbolic systems of conservation laws. II*, Acta Appl. Math.**108**(2009), no. 2, 235–277. MR**2551474**, DOI 10.1007/s10440-008-9311-6 - Shouxin Chen, Decheng Huang, and Xiaosen Han,
*The generalized Riemann problem for first order quasilinear hyperbolic systems of conservation laws. I*, Bull. Korean Math. Soc.**46**(2009), no. 3, 409–434. MR**2522855**, DOI 10.4134/BKMS.2009.46.3.409 - Paul Woodward and Phillip Colella,
*The numerical simulation of two-dimensional fluid flow with strong shocks*, J. Comput. Phys.**54**(1984), no. 1, 115–173. MR**748569**, DOI 10.1016/0021-9991(84)90142-6 - Eduard Harabetian,
*A convergent series expansion for hyperbolic systems of conservation laws*, Trans. Amer. Math. Soc.**294**(1986), no. 2, 383–424. MR**825712**, DOI 10.1090/S0002-9947-1986-0825712-4 - Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy,
*Uniformly high-order accurate essentially nonoscillatory schemes. III*, J. Comput. Phys.**71**(1987), no. 2, 231–303. MR**897244**, DOI 10.1016/0021-9991(87)90031-3 - Guang-Shan Jiang and Chi-Wang Shu,
*Efficient implementation of weighted ENO schemes*, J. Comput. Phys.**126**(1996), no. 1, 202–228. MR**1391627**, DOI 10.1006/jcph.1996.0130 - Martin Käser and Armin Iske,
*ADER schemes on adaptive triangular meshes for scalar conservation laws*, J. Comput. Phys.**205**(2005), no. 2, 486–508. MR**2134991**, DOI 10.1016/j.jcp.2004.11.015 - V. P. Kolgan,
*Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics*, J. Comput. Phys.**230**(2011), no. 7, 2384–2390. Translated from the Russian by Konstantin Kabin and Valeriy Tenishev. MR**2772921**, DOI 10.1016/j.jcp.2010.12.033 - De-Xing Kong,
*Global structure stability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: shocks and contact discontinuities*, J. Differential Equations**188**(2003), no. 1, 242–271. MR**1954515**, DOI 10.1016/S0022-0396(02)00068-2 - De-Xing Kong,
*Global structure instability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: rarefaction waves*, J. Differential Equations**219**(2005), no. 2, 421–450. MR**2183267**, DOI 10.1016/j.jde.2005.03.001 - P. D. Lax,
*Hyperbolic systems of conservation laws. II*, Comm. Pure Appl. Math.**10**(1957), 537–566. MR**93653**, DOI 10.1002/cpa.3160100406 - Ph. LeFloch and P.-A. Raviart,
*An asymptotic expansion for the solution of the generalized Riemann problem. I. General theory*, Ann. Inst. H. Poincaré Anal. Non Linéaire**5**(1988), no. 2, 179–207 (English, with French summary). MR**954470** - P. G. LeFloch and T. T. Li,
*A global in time asymptotic expansion for the solution of the generalized Riemann problem*, Asymp. Analysis**3**(1991), 321–340. - Ta Tsien Li and Wen Ci Yu,
*Boundary value problems for quasilinear hyperbolic systems*, Duke University Mathematics Series, V, Duke University, Mathematics Department, Durham, NC, 1985. MR**823237** - Xu-Dong Liu, Stanley Osher, and Tony Chan,
*Weighted essentially non-oscillatory schemes*, J. Comput. Phys.**115**(1994), no. 1, 200–212. MR**1300340**, DOI 10.1006/jcph.1994.1187 - I. S. Men′shov,
*Increase in the approximation order for Godunov’s scheme on the basis of the solution of the generalized Riemann problem*, Zh. Vychisl. Mat. i Mat. Fiz.**30**(1990), no. 9, 1357–1371, 1439 (Russian); English transl., U.S.S.R. Comput. Math. and Math. Phys.**30**(1990), no. 5, 54–65 (1991). MR**1085016** - T. Schwartzkopff, C. D. Munz, and E. F. Toro,
*ADER: a high-order approach for linear hyperbolic systems in 2D*, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 231–240. MR**1910564**, DOI 10.1023/A:1015160900410 - Joel Smoller,
*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146** - Tatsien Li and Libin Wang,
*Global propagation of regular nonlinear hyperbolic waves*, Progress in Nonlinear Differential Equations and their Applications, vol. 76, Birkhäuser Boston, Ltd., Boston, MA, 2009. MR**2524566** - Blake Temple,
*Systems of conservation laws with invariant submanifolds*, Trans. Amer. Math. Soc.**280**(1983), no. 2, 781–795. MR**716850**, DOI 10.1090/S0002-9947-1983-0716850-2 - V. A. Titarev and E. F. Toro,
*ADER: arbitrary high order Godunov approach*, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 609–618. MR**1910755**, DOI 10.1023/A:1015126814947 - V. A. Titarev and E. F. Toro,
*ADER schemes for three-dimensional non-linear hyperbolic systems*, J. Comput. Phys.**204**(2005), no. 2, 715–736. MR**2131859**, DOI 10.1016/j.jcp.2004.10.028 - V. A. Titarev and E. F. Toro,
*Analysis of ADER and ADER-WAF schemes*, IMA J. Numer. Anal.**27**(2007), no. 3, 616–630. MR**2337583**, DOI 10.1093/imanum/drl033 - Eleuterio F. Toro,
*Riemann solvers and numerical methods for fluid dynamics*, 3rd ed., Springer-Verlag, Berlin, 2009. A practical introduction. MR**2731357**, DOI 10.1007/b79761 - Eleuterio F. Toro and Arturo Hidalgo,
*ADER finite volume schemes for nonlinear reaction-diffusion equations*, Appl. Numer. Math.**59**(2009), no. 1, 73–100. MR**2474104**, DOI 10.1016/j.apnum.2007.12.001 - E. F. Toro, R. C. Millington, and L. A. M. Nejad,
*Towards very high order Godunov schemes*, Godunov methods (Oxford, 1999) Kluwer/Plenum, New York, 2001, pp. 907–940. MR**1963645** - E. F. Toro and V. A. Titarev,
*ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions*, J. Comput. Phys.**202**(2005), no. 1, 196–215. MR**2102882**, DOI 10.1016/j.jcp.2004.06.014 - E. F. Toro and V. A. Titarev,
*TVD fluxes for the high-order ADER schemes*, J. Sci. Comput.**24**(2005), no. 3, 285–309. MR**2219366**, DOI 10.1007/s10915-004-4790-8 - E. F. Toro and V. A. Titarev,
*Derivative Riemann solvers for systems of conservation laws and ADER methods*, J. Comput. Phys.**212**(2006), no. 1, 150–165. MR**2183608**, DOI 10.1016/j.jcp.2005.06.018 - B. van Leer,
*Towards the ultimate conservative difference scheme. V: A second order sequel to Godunov’s method*, J. Comput. Phys.**32**(1979), no. 1, 101–136.

## Additional Information

**Claus R. Goetz**- Affiliation: Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, I-38123 Trento, Italy
- Email: clausruediger.goetz@unitn.it
**Armin Iske**- Affiliation: Department of Mathematics, University of Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany
- MR Author ID: 600018
- Email: armin.iske@uni-hamburg.de
- Received by editor(s): September 4, 2013
- Received by editor(s) in revised form: April 24, 2014
- Published electronically: May 13, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 35-62 - MSC (2010): Primary 65M08; Secondary 65D15, 58J45, 35L65
- DOI: https://doi.org/10.1090/mcom/2970
- MathSciNet review: 3404442