Spectral properties of cubic complex Pisot units
HTML articles powered by AMS MathViewer
- by Tomáš Hejda and Edita Pelantová;
- Math. Comp. 85 (2016), 401-421
- DOI: https://doi.org/10.1090/mcom/2983
- Published electronically: June 9, 2015
- PDF | Request permission
Abstract:
For a real number $\beta >1$, Erdős, Joó and Komornik study distances between consecutive points in the set \[ X^m(\beta )=\Bigl \{\sum _{j=0}^n a_j \beta ^j : n\in \mathbb {N}, a_j\in \{0,1,\dots ,m\}\Bigr \}.\] Pisot numbers play a crucial role for the properties of $X^m(\beta )$. Following the work of Zaïmi, who considered $X^m(\gamma )$ with $\gamma \in \mathbb {C}\setminus \mathbb {R}$ and $|\gamma |>1$, we show that for any non-real $\gamma$ and $m<|\gamma |^2-1$, the set $X^m(\gamma )$ is not relatively dense in the complex plane.
Then we focus on complex Pisot units $\gamma$ with a positive real conjugate $\gamma ’$ and $m>|\gamma |^2-1$. If the number $1/\gamma ’$ satisfies Property (F), we deduce that $X^m(\gamma )$ is uniformly discrete and relatively dense, i.e., $X^m(\gamma )$ is a Delone set. Moreover, we present an algorithm for determining two parameters of the Delone set $X^m(\gamma )$ which are analogous to minimal and maximal distances in the real case $X^m(\beta )$. For $\gamma$ satisfying $\gamma ^3+\gamma ^2+\gamma -1=0$, explicit formulas for the two parameters are given.
References
- Shigeki Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 11–26. MR 1770451
- Shigeki Akiyama, Hui Rao, and Wolfgang Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), no. 1, 135–160. MR 2059954, DOI 10.1016/j.jnt.2004.02.001
- Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), no. 238, 767–780. MR 1885627, DOI 10.1090/S0025-5718-01-01336-9
- Peter Borwein and Kevin G. Hare, General forms for minimal spectral values for a class of quadratic Pisot numbers, Bull. London Math. Soc. 35 (2003), no. 1, 47–54. MR 1934431, DOI 10.1112/S0024609302001455
- Y. Bugeaud, On a property of Pisot numbers and related questions, Acta Math. Hungar. 73 (1996), no. 1-2, 33–39. MR 1415918, DOI 10.1007/BF00058941
- Daniel Dombek, Zuzana Masáková, and Volker Ziegler, On distinct unit generated fields that are totally complex, J. Number Theory 148 (2015), 311–327. MR 3283182, DOI 10.1016/j.jnt.2014.09.029
- Pál Erdös, István Joó, and Vilmos Komornik, Characterization of the unique expansions $1=\sum ^\infty _{i=1}q^{-n_i}$ and related problems, Bull. Soc. Math. France 118 (1990), no. 3, 377–390 (English, with French summary). MR 1078082
- Paul Erdős, István Joó, and Vilmos Komornik, On the sequence of numbers of the form $\epsilon _0+\epsilon _1q+\cdots +\epsilon _nq^n,\ \epsilon _i\in \{0,1\}$, Acta Arith. 83 (1998), no. 3, 201–210. MR 1611185, DOI 10.4064/aa-83-3-201-210
- D.-J. Feng, On the topology of polynomials with bounded integer coefficients, to appear in J. Eur. Math. Soc., 2015. \ttfamily arXiv:1109.1407.
- De-Jun Feng and Zhi-Ying Wen, A property of Pisot numbers, J. Number Theory 97 (2002), no. 2, 305–316. MR 1942963, DOI 10.1016/S0022-314X(02)00013-6
- Vilmos Komornik, Paola Loreti, and Marco Pedicini, An approximation property of Pisot numbers, J. Number Theory 80 (2000), no. 2, 218–237. MR 1740512, DOI 10.1006/jnth.1999.2456
- Takao Komatsu, An approximation property of quadratic irrationals, Bull. Soc. Math. France 130 (2002), no. 1, 35–48 (English, with English and French summaries). MR 1906191, DOI 10.24033/bsmf.2411
- Robert V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403–441. MR 1460032
- Zuzana Masáková, Kateřina Pastirčáková, and Edita Pelantová, Description of spectra of quadratic Pisot units, J. Number Theory 150 (2015), 168–190. MR 3304612, DOI 10.1016/j.jnt.2014.11.011
- Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles in quasicrystals. I. General method, J. Phys. A 36 (2003), no. 7, 1869–1894. MR 1960699, DOI 10.1088/0305-4470/36/7/306
- Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles of quasicrystals. II. Circular acceptance window of arbitrary size, J. Phys. A 36 (2003), no. 7, 1895–1912. MR 1960700, DOI 10.1088/0305-4470/36/7/307
- Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles of quasicrystals. III. Decagonal acceptance window of any size, J. Phys. A 38 (2005), no. 9, 1947–1960. MR 2124374, DOI 10.1088/0305-4470/38/9/008
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. MR 97374, DOI 10.1007/BF02020331
- The Sage Group, Sage: Open source mathematical software (version 6.1.1), 2014, http://www.sagemath.org.
- Klaus Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269–278. MR 576976, DOI 10.1112/blms/12.4.269
- T. Tantau et al., TikZ & PGF (version 2.10), 2010, \ttfamily http://sourceforge.net/\ttfamily projects/pgf.
- T. Vávra, On the finiteness property of negative cubic Pisot bases, 2014, submitted, 13 pp., \ttfamily arXiv:1404.1274.
- Toufik Zaïmi, On an approximation property of Pisot numbers. II, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 239–249 (English, with English and French summaries). MR 2145586
Bibliographic Information
- Tomáš Hejda
- Affiliation: Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, Prague 12000, Czech Republic
- Address at time of publication: LIAFA, CNRS UMR 7089, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France
- Email: tohecz@gmail.com
- Edita Pelantová
- Affiliation: Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, Prague 12000, Czech Republic
- Email: edita.pelantova@fjfi.cvut.cz
- Received by editor(s): December 2, 2013
- Received by editor(s) in revised form: May 14, 2014, and August 5, 2014
- Published electronically: June 9, 2015
- Additional Notes: This work was supported by Grant Agency of the Czech Technical University in Prague grant SGS14/205/OHK4/3T/14, Czech Science Foundation grant 13-03538S, and ANR/FWF project “FAN – Fractals and Numeration” (ANR-12-IS01-0002, FWF grant I1136)
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 401-421
- MSC (2010): Primary 11A63, 11K16, 52C23, 52C10; Secondary 11H99, 11-04
- DOI: https://doi.org/10.1090/mcom/2983
- MathSciNet review: 3404455