## Control of 2D scalar conservation laws in the presence of shocks

HTML articles powered by AMS MathViewer

- by Rodrigo Lecaros and Enrique Zuazua PDF
- Math. Comp.
**85**(2016), 1183-1224 Request permission

## Abstract:

We analyze a model optimal control problem for a 2D scalar conservation law—the so-called inverse design problem—with the goal being to identify the initial datum leading to a given final time configuration. The presence of shocks is an impediment for classical methods, based on linearization, to be directly applied. We develop an alternating descent method that exploits the generalized linearization that takes into account both the sensitivity of the shock location and of the smooth components of solutions. A numerical implementation is proposed using splitting and finite differences. The descent method we propose is of alternating nature and combines variations taking account of the shock location and those that take care of the smooth components of the solution. The efficiency of the method is illustrated by numerical experiments.## References

- A. Adimurthi, S. Ghoshal, and V. Gowda,
*Exact controllability of scalar conservation law with strict convex flux*, http://hal.upmc.fr/docs/00/87/35/53/PDF/ExactControl.pdf., preprint, 2011. - Fabio Ancona and Giuseppe Maria Coclite,
*On the attainable set for Temple class systems with boundary controls*, SIAM J. Control Optim.**43**(2005), no. 6, 2166–2190. MR**2179483**, DOI 10.1137/S0363012902407776 - Fabio Ancona and Andrea Marson,
*On the attainable set for scalar nonlinear conservation laws with boundary control*, SIAM J. Control Optim.**36**(1998), no. 1, 290–312. MR**1616586**, DOI 10.1137/S0363012996304407 - Didier Auroux and Jacques Blum,
*Back and forth nudging algorithm for data assimilation problems*, C. R. Math. Acad. Sci. Paris**340**(2005), no. 12, 873–878 (English, with English and French summaries). MR**2151776**, DOI 10.1016/j.crma.2005.05.006 - Claude Bardos and Olivier Pironneau,
*A formalism for the differentiation of conservation laws*, C. R. Math. Acad. Sci. Paris**335**(2002), no. 10, 839–845 (English, with English and French summaries). MR**1947710**, DOI 10.1016/S1631-073X(02)02574-8 - F. Bouchut and F. James,
*One-dimensional transport equations with discontinuous coefficients*, Nonlinear Anal.**32**(1998), no. 7, 891–933. MR**1618393**, DOI 10.1016/S0362-546X(97)00536-1 - François Bouchut and François James,
*Differentiability with respect to initial data for a scalar conservation law*, Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998) Internat. Ser. Numer. Math., vol. 129, Birkhäuser, Basel, 1999, pp. 113–118. MR**1715739** - T. Boukadida and A. Y. LeRoux,
*A new version of the two-dimensional Lax-Friedrichs scheme*, Math. Comp.**63**(1994), no. 208, 541–553. MR**1242059**, DOI 10.1090/S0025-5718-1994-1242059-3 - Alberto Bressan and Andrea Marson,
*A maximum principle for optimally controlled systems of conservation laws*, Rend. Sem. Mat. Univ. Padova**94**(1995), 79–94. MR**1370904** - Alberto Bressan and Andrea Marson,
*A variational calculus for discontinuous solutions of systems of conservation laws*, Comm. Partial Differential Equations**20**(1995), no. 9-10, 1491–1552. MR**1349222**, DOI 10.1080/03605309508821142 - J. Canny,
*A computational approach to edge detection*, Pattern Analysis and Machine Intelligence, IEEE Transactions on**PAMI-8**(1986), no. 6, 679–698. - Carlos Castro, Francisco Palacios, and Enrique Zuazua,
*An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks*, Math. Models Methods Appl. Sci.**18**(2008), no. 3, 369–416. MR**2397976**, DOI 10.1142/S0218202508002723 - C. Castro, F. Palacios, and E. Zuazua,
*Optimal control and vanishing viscosity for the Burgers equation*, Integral methods in science and engineering. Vol. 2, Birkhäuser Boston, Boston, MA, 2010, pp. 65–90. MR**2663150**, DOI 10.1007/978-0-8176-4897-8_{7} - Carlos Castro and Enrique Zuazua,
*Flux identification for 1-d scalar conservation laws in the presence of shocks*, Math. Comp.**80**(2011), no. 276, 2025–2070. MR**2813348**, DOI 10.1090/S0025-5718-2011-02465-8 - Michael Crandall and Andrew Majda,
*The method of fractional steps for conservation laws*, Numer. Math.**34**(1980), no. 3, 285–314. MR**571291**, DOI 10.1007/BF01396704 - Michael W. D. Davis and Michel David,
*An algorithm for finding the position of a point relative to a fixed polygonal boundary*, J. Internat. Assoc. Math. Geol.**12**(1980), no. 1, 61–68. MR**594012**, DOI 10.1007/BF01039904 - François Dubois and Philippe LeFloch,
*Boundary conditions for nonlinear hyperbolic systems of conservation laws*, J. Differential Equations**71**(1988), no. 1, 93–122. MR**922200**, DOI 10.1016/0022-0396(88)90040-X - Lawrence C. Evans,
*Partial differential equations*, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR**1625845** - Caroline Fabre, Jean-Pierre Puel, and Enrique Zuazua,
*On the density of the range of the semigroup for semilinear heat equations*, Control and optimal design of distributed parameter systems (Minneapolis, MN, 1992) IMA Vol. Math. Appl., vol. 70, Springer, New York, 1995, pp. 73–91. MR**1345629**, DOI 10.1007/978-1-4613-8460-1_{4} - Stéphane Garreau, Philippe Guillaume, and Mohamed Masmoudi,
*The topological asymptotic for PDE systems: the elasticity case*, SIAM J. Control Optim.**39**(2001), no. 6, 1756–1778. MR**1825864**, DOI 10.1137/S0363012900369538 - Michael B. Giles and Niles A. Pierce,
*Analytic adjoint solutions for the quasi-one-dimensional Euler equations*, J. Fluid Mech.**426**(2001), 327–345. MR**1819479**, DOI 10.1017/S0022112000002366 - Edwige Godlewski and Pierre-Arnaud Raviart,
*Hyperbolic systems of conservation laws*, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4, Ellipses, Paris, 1991. MR**1304494** - Edwige Godlewski and Pierre-Arnaud Raviart,
*The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws. A general numerical approach*, Math. Comput. Simulation**50**(1999), no. 1-4, 77–95. Modelling ’98 (Prague). MR**1717658**, DOI 10.1016/S0378-4754(99)00062-2 - Laurent Gosse,
*A two-dimensional version of the Godunov scheme for scalar balance laws*, SIAM J. Numer. Anal.**52**(2014), no. 2, 626–652. MR**3179555**, DOI 10.1137/130925906 - Laurent Gosse and François James,
*Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients*, Math. Comp.**69**(2000), no. 231, 987–1015. MR**1670896**, DOI 10.1090/S0025-5718-00-01185-6 - J. Hall,
*Ptloc-a fortran subroutine for determining the position of a point relative to a closed boundary*, Journal of the International Association for Mathematical Geology**7**(1975), no. 1, 75–79 (English). - François James and Mauricio Sepúlveda,
*Convergence results for the flux identification in a scalar conservation law*, SIAM J. Control Optim.**37**(1999), no. 3, 869–891. MR**1680830**, DOI 10.1137/S0363012996272722 - S. N. Kružkov,
*First order quasilinear equations with several independent variables.*, Mat. Sb. (N.S.)**81 (123)**(1970), 228–255 (Russian). MR**0267257** - Andrew Majda,
*The stability of multidimensional shock fronts*, Mem. Amer. Math. Soc.**41**(1983), no. 275, iv+95. MR**683422**, DOI 10.1090/memo/0275 - David Mumford and Jayant Shah,
*Optimal approximations by piecewise smooth functions and associated variational problems*, Comm. Pure Appl. Math.**42**(1989), no. 5, 577–685. MR**997568**, DOI 10.1002/cpa.3160420503 - L. Rudin, S. Osher, and E. Fatemi,
*Nonlinear total variation based noise removal algorithms*, Phys. D**60**(1992), no. 1-4, 259–268. - J. A. Sethian,
*Level set methods and fast marching methods*, 2nd ed., Cambridge Monographs on Applied and Computational Mathematics, vol. 3, Cambridge University Press, Cambridge, 1999. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. MR**1700751** - Stefan Ulbrich,
*Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws*, Systems Control Lett.**48**(2003), no. 3-4, 313–328. Optimization and control of distributed systems. MR**2020647**, DOI 10.1016/S0167-6911(02)00275-X - Xin Wen and Shi Jin,
*Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients. I. $L^1$-error estimates*, J. Comput. Math.**26**(2008), no. 1, 1–22. MR**2378582** - Yuxi Zheng,
*Systems of conservation laws*, Progress in Nonlinear Differential Equations and their Applications, vol. 38, Birkhäuser Boston, Inc., Boston, MA, 2001. Two-dimensional Riemann problems. MR**1839813**, DOI 10.1007/978-1-4612-0141-0

## Additional Information

**Rodrigo Lecaros**- Affiliation: BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E-48009, Bilbao, Basque Country, Spain — and — CMM - Centro de Modelamiento Matemático. Universidad de Chile (UMI CNRS 2807), Avenida Blanco Encalada 2120, Casilla 170-3, Correo 3, Santiago, Chile
- Email: rlecaros@dim.uchile.cl
**Enrique Zuazua**- Affiliation: BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E-48009, Bilbao, Basque Country, Spain — and — Ikerbasque - Basque Foundation for Science, Maria Diaz de Haro, 3. 48013 Bilbao, Basque Country, Spain
- MR Author ID: 187655
- Email: zuazua@bcamath.org
- Received by editor(s): April 30, 2014
- Received by editor(s) in revised form: October 3, 2014, and November 15, 2014
- Published electronically: August 25, 2015
- Additional Notes: The first author was partially supported by Basal-CMM project, PFB 03

This work was done while the second author was visiting the CIMI (Centre International de Mathématiques et Informatique) of Toulouse (France) and the University of Erlangen-Nürnberg within the Humboldt Research Award program

This work was supported by the Advanced Grants NUMERIWAVES/FP7-246775 of the European Research Council Executive Agency, FA9550-14-1-0214 of the EOARD-AFOSR, PI2010-04 and the BERC 2014-2017 program of the Basque Government, the MTM2011-29360-C02-00 and SEV-2013-0323 Grants of the MINECO - © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 1183-1224 - MSC (2010): Primary 35L67, 49J20, 90C31, 49M30, 35L65
- DOI: https://doi.org/10.1090/mcom/3015
- MathSciNet review: 3454362