## The Costabel-Stephan system of boundary integral equations in the time domain

HTML articles powered by AMS MathViewer

- by Tianyu Qiu and Francisco-Javier Sayas PDF
- Math. Comp.
**85**(2016), 2341-2364 Request permission

## Abstract:

In this paper we formulate a transmission problem for the transient acoustic wave equation as a system of retarded boundary integral equations. We then analyse a fully discrete method using a general Galerkin semidiscretization-in-space and convolution quadrature (CQ) in time. All proofs are developed using recent techniques based on the theory of evolution equations. Some numerical experiments are provided.## References

- Toufic Abboud, Patrick Joly, Jerónimo Rodríguez, and Isabelle Terrasse,
*Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains*, J. Comput. Phys.**230**(2011), no. 15, 5877–5907. MR**2804957**, DOI 10.1016/j.jcp.2011.03.062 - A. Bamberger and T. Ha Duong,
*Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I*, Math. Methods Appl. Sci.**8**(1986), no. 3, 405–435 (French, with English summary). MR**859833** - A. Bamberger and T. Ha Duong,
*Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide*, Math. Methods Appl. Sci.**8**(1986), no. 4, 598–608 (French, with English summary). MR**870995** - Lehel Banjai, Antonio R. Laliena, and Francisco-Javier Sayas,
*Fully discrete Kirchhoff formulas with CQ-BEM*, IMA J. Numer. Anal.**35**(2015), no. 2, 859–884. MR**3335227**, DOI 10.1093/imanum/dru017 - Lehel Banjai,
*Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments*, SIAM J. Sci. Comput.**32**(2010), no. 5, 2964–2994. MR**2729447**, DOI 10.1137/090775981 - Lehel Banjai, Christian Lubich, and Francisco-Javier Sayas,
*Stable numerical coupling of exterior and interior problems for the wave equation*, Numer. Math.**129**(2015), no. 4, 611–646. MR**3317813**, DOI 10.1007/s00211-014-0650-0 - Lehel Banjai, Matthias Messner, and Martin Schanz,
*Runge-Kutta convolution quadrature for the boundary element method*, Comput. Methods Appl. Mech. Engrg.**245/246**(2012), 90–101. MR**2969188**, DOI 10.1016/j.cma.2012.07.007 - Lehel Banjai and Martin Schanz,
*Wave propagation problems treated with convolution quadrature and BEM*, Fast boundary element methods in engineering and industrial applications, Lect. Notes Appl. Comput. Mech., vol. 63, Springer, Heidelberg, 2012, pp. 145–184. MR**3059731**, DOI 10.1007/978-3-642-25670-7_{5} - Yassine Boubendir, Victor Dominguez, David Levadoux, and Catalin Turc,
*Regularized combined field integral equations for acoustic transmission problems*, 2013, arXiv:1312.6598. - John Fun-Choi Chan and Peter Monk,
*Time dependent electromagnetic scattering by a penetrable obstacle*, BIT**55**(2015), no. 1, 5–31. MR**3313600**, DOI 10.1007/s10543-014-0500-6 - Qiang Chen and Peter Monk,
*Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature*, SIAM J. Math. Anal.**46**(2014), no. 5, 3107–3130. MR**3257633**, DOI 10.1137/110833555 - Xavier Claeys and Ralf Hiptmair,
*Multi-trace boundary integral formulation for acoustic scattering by composite structures*, Comm. Pure Appl. Math.**66**(2013), no. 8, 1163–1201. MR**3069956**, DOI 10.1002/cpa.21462 - Martin Costabel and Ernst Stephan,
*A direct boundary integral equation method for transmission problems*, J. Math. Anal. Appl.**106**(1985), no. 2, 367–413. MR**782799**, DOI 10.1016/0022-247X(85)90118-0 - Víctor Domínguez, Sijiang L. Lu, and Francisco-Javier Sayas,
*A Nyström flavored Calderón calculus of order three for two dimensional waves, time-harmonic and transient*, Comput. Math. Appl.**67**(2014), no. 1, 217–236. MR**3141718**, DOI 10.1016/j.camwa.2013.11.005 - Víctor Domínguez and Francisco-Javier Sayas,
*Some properties of layer potentials and boundary integral operators for the wave equation*, J. Integral Equations Appl.**25**(2013), no. 2, 253–294. MR**3161614**, DOI 10.1216/JIE-2013-25-2-253 - Silvia Falletta and Giovanni Monegato,
*An exact non reflecting boundary condition for 2D time-dependent wave equation problems*, Wave Motion**51**(2014), no. 1, 168–192. MR**3127695**, DOI 10.1016/j.wavemoti.2013.06.001 - S. P. Groth, D. P. Hewett, and S. Langdon,
*Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons*, IMA Journal of Applied Mathematics (2013). - Matthew Hassell and Francisco-Javier Sayas,
*Convolution quadrature for wave simulations*, 2014, arXiv:1407.0345. - R. Hiptmair and C. Jerez-Hanckes,
*Multiple traces boundary integral formulation for Helmholtz transmission problems*, Adv. Comput. Math.**37**(2012), no. 1, 39–91. MR**2927645**, DOI 10.1007/s10444-011-9194-3 - R. E. Kleinman and P. A. Martin,
*On single integral equations for the transmission problem of acoustics*, SIAM J. Appl. Math.**48**(1988), no. 2, 307–325. MR**933037**, DOI 10.1137/0148016 - R. Kreß and G. F. Roach,
*Transmission problems for the Helmholtz equation*, J. Mathematical Phys.**19**(1978), no. 6, 1433–1437. MR**495653**, DOI 10.1063/1.523808 - Antonio R. Laliena and Francisco-Javier Sayas,
*Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves*, Numer. Math.**112**(2009), no. 4, 637–678. MR**2507621**, DOI 10.1007/s00211-009-0220-z - C. Lubich,
*Convolution quadrature and discretized operational calculus. I*, Numer. Math.**52**(1988), no. 2, 129–145. MR**923707**, DOI 10.1007/BF01398686 - Ch. Lubich,
*On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations*, Numer. Math.**67**(1994), no. 3, 365–389. MR**1269502**, DOI 10.1007/s002110050033 - F.-J. Sayas,
*Retarded potentials and time domain integral equations: a roadmap*, to appear in Springer series in computational mathematics, 2015. - Francisco-Javier Sayas,
*Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations*, Numer. Math.**124**(2013), no. 1, 121–149. MR**3041732**, DOI 10.1007/s00211-012-0506-4 - Rodolfo H. Torres and Grant V. Welland,
*The Helmholtz equation and transmission problems with Lipschitz interfaces*, Indiana Univ. Math. J.**42**(1993), no. 4, 1457–1485. MR**1266102**, DOI 10.1512/iumj.1993.42.42067 - T. von Petersdorff,
*Boundary integral equations for mixed Dirichlet, Neumann and transmission problems*, Math. Methods Appl. Sci.**11**(1989), no. 2, 185–213. MR**984053**, DOI 10.1002/mma.1670110203 - A. Zinn,
*A numerical method for transmission problems for the Helmholtz equation*, Computing**41**(1989), no. 3, 267–274 (English, with German summary). MR**988240**, DOI 10.1007/BF02259097

## Additional Information

**Tianyu Qiu**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- Email: qty@udel.edu
**Francisco-Javier Sayas**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 621885
- Email: fjsayas@udel.edu
- Received by editor(s): August 13, 2014
- Received by editor(s) in revised form: February 26, 2015
- Published electronically: November 18, 2015
- Additional Notes: This work was partially funded by NSF (grant DMS 1216356)
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 2341-2364 - MSC (2010): Primary 65N30, 65N38, 65N12, 65N15
- DOI: https://doi.org/10.1090/mcom3053
- MathSciNet review: 3511284