Quasi-unbiased Hadamard matrices and weakly unbiased Hadamard matrices: A coding-theoretic approach
HTML articles powered by AMS MathViewer
- by Makoto Araya, Masaaki Harada and Sho Suda;
- Math. Comp. 86 (2017), 951-984
- DOI: https://doi.org/10.1090/mcom/3122
- Published electronically: June 29, 2016
- PDF | Request permission
Abstract:
This paper is concerned with quasi-unbiased Hadamard matrices and weakly unbiased Hadamard matrices, which are generalizations of unbiased Hadamard matrices, equivalently unbiased bases. These matrices are studied from the viewpoint of coding theory. As a consequence of a coding-theoretic approach, we provide upper bounds on the number of mutually quasi-unbiased Hadamard matrices. We give classifications of a certain class of self-complementary codes for modest lengths. These codes give quasi-unbiased Hadamard matrices and weakly unbiased Hadamard matrices. Some modification of the notion of weakly unbiased Hadamard matrices is also provided.References
- Kanat Abdukhalikov, Eiichi Bannai, and Sho Suda, Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets, J. Combin. Theory Ser. A 116 (2009), no. 2, 434–448. MR 2475026, DOI 10.1016/j.jcta.2008.07.002
- S. S. Agaian, Hadamard matrices and their applications, Lecture Notes in Mathematics, vol. 1168, Springer-Verlag, Berlin, 1985. MR 818740, DOI 10.1007/BFb0101073
- E. Bannai and E. Bannai, On antipodal spherical $t$-designs of degree $s$ with $t\geq 2s-3$, J. Comb. Inf. Syst. Sci. 34 (2009), 33–50.
- Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. Association schemes. MR 882540
- Darcy Best and Hadi Kharaghani, Unbiased complex Hadamard matrices and bases, Cryptogr. Commun. 2 (2010), no. 2, 199–209. MR 2719839, DOI 10.1007/s12095-010-0029-8
- D. Best, H. Kharaghani, and H. Ramp, Mutually unbiased weighing matrices, Des. Codes Cryptogr. 76 (2015), no. 2, 237–256. MR 3357244, DOI 10.1007/s10623-014-9944-6
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- P. O. Boykin, M. Sitharam, M. Tarifi, and P. Wocjan, Real mutually unbiased bases, preprint, arXiv:quant-ph/0502024v2 (revised version dated Feb. 1, 2008).
- A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18, Springer-Verlag, Berlin, 1989. MR 1002568, DOI 10.1007/978-3-642-74341-2
- A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, $Z_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc. (3) 75 (1997), no. 2, 436–480. MR 1455862, DOI 10.1112/S0024611597000403
- P. J. Cameron and J. J. Seidel, Quadratic forms over $GF(2)$, Indag. Math. 35 (1973), 1–8. Nederl. Akad. Wetensch. Proc. Ser. A 76. MR 327801
- R. Craigen, Constructing Hadamard matrices with orthogonal pairs, Ars Combin. 33 (1992), 57–64. MR 1174830
- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), vi+97. MR 384310
- Philippe Delsarte, Four fundamental parameters of a code and their combinatorial significance, Information and Control 23 (1973), 407–438. MR 335135
- P. Delsarte, J. M. Goethals, and J. J. Seidel, Bounds for systems of lines and Jacobi polynomials, Philips Res. Rep. 30 (1975), 91–105.
- A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The $\textbf {Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046, DOI 10.1109/18.312154
- M. Harada and S. Suda, On binary codes related to mutually quasi-unbiased weighing matrices, submitted.
- A. S. Hedayat, N. J. A. Sloane, and John Stufken, Orthogonal arrays, Springer Series in Statistics, Springer-Verlag, New York, 1999. Theory and applications; With a foreword by C. R. Rao. MR 1693498, DOI 10.1007/978-1-4612-1478-6
- W. H. Holzmann, H. Kharaghani, and W. Orrick, On the real unbiased Hadamard matrices, Combinatorics and graphs, Contemp. Math., vol. 531, Amer. Math. Soc., Providence, RI, 2010, pp. 243–250. MR 2757803, DOI 10.1090/conm/531/10471
- Yury J. Ionin and Mohan S. Shrikhande, Combinatorics of symmetric designs, New Mathematical Monographs, vol. 5, Cambridge University Press, Cambridge, 2006. MR 2234039, DOI 10.1017/CBO9780511542992
- Hadi Kharaghani, Sara Sasani, and Sho Suda, Mutually unbiased Bush-type Hadamard matrices and association schemes, Electron. J. Combin. 22 (2015), no. 3, Paper 3.10, 11. MR 3367859, DOI 10.37236/4915
- Hadi Kharaghani and Behruz Tayfeh-Rezaie, Hadamard matrices of order 32, J. Combin. Des. 21 (2013), no. 5, 212–221. MR 3037086, DOI 10.1002/jcd.21323
- Nicholas LeCompte, William J. Martin, and William Owens, On the equivalence between real mutually unbiased bases and a certain class of association schemes, European J. Combin. 31 (2010), no. 6, 1499–1512. MR 2660399, DOI 10.1016/j.ejc.2009.11.014
- V. I. Levenshteĭn, Bounds for self-complementary codes and their applications, Eurocode ’92 (Udine, 1992) CISM Courses and Lect., vol. 339, Springer, Vienna, 1993, pp. 159–171. MR 1268656
- S. Niskanen and P. R. J. Östergård, Cliquer User’s Guide, Version 1.0, Technical Report T48, Communications Laboratory, Helsinki University of Technology, 2003.
- Hiroshi Nozaki and Sho Suda, Weighing matrices and spherical codes, J. Algebraic Combin. 42 (2015), no. 1, 283–291. MR 3365601, DOI 10.1007/s10801-015-0581-6
- Patric R. J. Östergård, Classifying subspaces of Hamming spaces, Des. Codes Cryptogr. 27 (2002), no. 3, 297–305. MR 1928445, DOI 10.1023/A:1019903407222
- N. J. A. Sloane, A Library of Hadamard Matrices, published electronically at http://neilsloane.com/hadamard/index.html.
- Pawel Wocjan and Thomas Beth, New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), no. 2, 93–101. MR 2132048
Bibliographic Information
- Makoto Araya
- Affiliation: Department of Computer Science, Shizuoka University, Hamamatsu 432–8011, Japan
- MR Author ID: 609178
- Email: araya@inf.shizuoka.ac.jp
- Masaaki Harada
- Affiliation: Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan
- Email: mharada@m.tohoku.ac.jp
- Sho Suda
- Affiliation: Department of Mathematics Education, Aichi University of Education, Kariya 448-8542, Japan
- Email: suda@auecc.aichi-edu.ac.jp
- Received by editor(s): April 6, 2015
- Received by editor(s) in revised form: September 16, 2015, and September 30, 2015
- Published electronically: June 29, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 951-984
- MSC (2010): Primary 05B20, 94B25, 94B65; Secondary 05E30
- DOI: https://doi.org/10.1090/mcom/3122
- MathSciNet review: 3584556
Dedicated: Dedicated to Professor Satoshi Yoshiara on his 60th birthday