Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations
HTML articles powered by AMS MathViewer
- by Aycil Cesmelioglu, Bernardo Cockburn and Weifeng Qiu;
- Math. Comp. 86 (2017), 1643-1670
- DOI: https://doi.org/10.1090/mcom/3195
- Published electronically: November 28, 2016
- PDF | Request permission
Abstract:
We present the first a priori error analysis of the hybridizable discontinuous Galerkin method for the approximation of the Navier-Stokes equations proposed in J. Comput. Phys. vol. 230 (2011), pp. 1147-1170. The method is defined on conforming meshes made of simplexes and provides piecewise polynomial approximations of fixed degree $k$ to each of the components of the velocity gradient, velocity and pressure. For the stationary case, and under the usual smallness condition for the source term, we prove that the method is well defined and that the global $L^2$-norm of the error in each of the above-mentioned variables converges with the optimal order of $k+1$ for $k\ge 0$. We also prove a superconvergence property of the velocity which allows us to obtain an elementwise postprocessed approximate velocity, $H(\textrm {div})$-conforming and divergence-free, which converges with order $k+2$ for $k\ge 1$. In addition, we show that these results only depend on the inverse of the stabilization parameter of the jump of the normal component of the velocity. Thus, if we superpenalize those jumps, these converegence results do hold by assuming that the pressure lies in $H^1(\Omega )$ only. Moreover, by letting such stabilization parameters go to infinity, we obtain new $H(\textrm {div})$-conforming methods with the above-mentioned convergence properties.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), no. 6, 1466–1485. MR 1080332, DOI 10.1137/0727085
- Peter Bastian and Béatrice Rivière, Superconvergence and $H(\textrm {div})$ projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids 42 (2003), no. 10, 1043–1057. MR 1991232, DOI 10.1002/fld.562
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Jesús Carrero, Bernardo Cockburn, and Dominik Schötzau, Hybridized globally divergence-free LDG methods. I. The Stokes problem, Math. Comp. 75 (2006), no. 254, 533–563. MR 2196980, DOI 10.1090/S0025-5718-05-01804-1
- Aycil Cesmelioglu, Bernardo Cockburn, Ngoc Cuong Nguyen, and Jaume Peraire, Analysis of HDG methods for Oseen equations, J. Sci. Comput. 55 (2013), no. 2, 392–431. MR 3044180, DOI 10.1007/s10915-012-9639-y
- Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow, Math. Comp. 80 (2011), no. 274, 723–760. MR 2772094, DOI 10.1090/S0025-5718-2010-02410-X
- Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp. 74 (2005), no. 251, 1067–1095. MR 2136994, DOI 10.1090/S0025-5718-04-01718-1
- Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput. 31 (2007), no. 1-2, 61–73. MR 2304270, DOI 10.1007/s10915-006-9107-7
- Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput. 40 (2009), no. 1-3, 188–210. MR 2511732, DOI 10.1007/s10915-008-9261-1
- Bernardo Cockburn, Guido Kanschat, Dominik Schötzau, and Christoph Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal. 40 (2002), no. 1, 319–343. MR 1921922, DOI 10.1137/S0036142900380121
- Bernardo Cockburn and Francisco-Javier Sayas, Divergence-conforming HDG methods for Stokes flows, Math. Comp. 83 (2014), no. 288, 1571–1598. MR 3194122, DOI 10.1090/S0025-5718-2014-02802-0
- Bernardo Cockburn and Ke Shi, Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp. 82 (2013), no. 282, 651–671. MR 3008833, DOI 10.1090/S0025-5718-2012-02644-5
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Michel Fortin, Finite element solution of the Navier-Stokes equations, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 239–284. MR 1224684, DOI 10.1017/S0962492900002373
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
- Vivette Girault, Béatrice Rivière, and Mary F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp. 74 (2005), no. 249, 53–84. MR 2085402, DOI 10.1090/S0025-5718-04-01652-7
- Thomas J. R. Hughes and Leopoldo P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg. 65 (1987), no. 1, 85–96. MR 914609, DOI 10.1016/0045-7825(87)90184-8
- Thomas J. R. Hughes, Leopoldo P. Franca, and Marc Balestra, A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1986), no. 1, 85–99. MR 868143, DOI 10.1016/0045-7825(86)90025-3
- Ohannes A. Karakashian and Wadi N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), no. 1, 93–120. MR 1618436, DOI 10.1137/S0036142996297199
- Nasserdine Kechkar and David Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1–10. MR 1106973, DOI 10.1090/S0025-5718-1992-1106973-X
- Christoph Lehrenfeld and Joachim Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg. 307 (2016), 339–361. MR 3511719, DOI 10.1016/j.cma.2016.04.025
- A. Montlaur, S. Fernandez-Mendez, and A. Huerta, Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations, Internat. J. Numer. Methods Fluids 57 (2008), no. 9, 1071–1092. MR 2435083, DOI 10.1002/fld.1716
- A. Montlaur, S. Fernandez-Mendez, J. Peraire, and A. Huerta, Discontinuous Galerkin methods for the Navier-Stokes equations using solenoidal approximations, Internat. J. Numer. Methods Fluids 64 (2010), no. 5, 549–564. MR 2683650, DOI 10.1002/fld.2161
- N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 9-12, 582–597. MR 2796169, DOI 10.1016/j.cma.2009.10.007
- N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. 230 (2011), no. 4, 1147–1170. MR 2753354, DOI 10.1016/j.jcp.2010.10.032
- D. Schötzau, C. Schwab, and A. Toselli, Stabilized $hp$-DGFEM for incompressible flow, Math. Models Methods Appl. Sci. 13 (2003), no. 10, 1413–1436. MR 2013492, DOI 10.1142/S0218202503002970
- Rolf Stenberg, Some new families of finite elements for the Stokes equations, Numer. Math. 56 (1990), no. 8, 827–838. MR 1035181, DOI 10.1007/BF01405291
- Andrea Toselli, $hp$ discontinuous Galerkin approximations for the Stokes problem, Math. Models Methods Appl. Sci. 12 (2002), no. 11, 1565–1597. MR 1938957, DOI 10.1142/S0218202502002240
Bibliographic Information
- Aycil Cesmelioglu
- Affiliation: Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309
- MR Author ID: 864513
- Email: cesmelio@oakland.edu
- Bernardo Cockburn
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
- Weifeng Qiu
- Affiliation: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- MR Author ID: 845089
- Email: weifeqiu@cityu.edu.hk
- Received by editor(s): February 8, 2015
- Received by editor(s) in revised form: January 31, 2016
- Published electronically: November 28, 2016
- Additional Notes: The second author was supported in part by the National Science Foundation through DMS Grant 1115331.
The third author was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302014). The third author is the corresponding author - © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 1643-1670
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/mcom/3195
- MathSciNet review: 3626531