## On generalized averaged Gaussian formulas. II

HTML articles powered by AMS MathViewer

- by Miodrag M. Spalević PDF
- Math. Comp.
**86**(2017), 1877-1885 Request permission

## Abstract:

Recently, by following the results on characterization of positive quadrature formulae by Peherstorfer, we proposed a new $(2\ell +1)$-point quadrature rule $\widehat G_{2\ell +1}$, referred to as a generalized averaged Gaussian quadrature rule. This rule has $2\ell +1$ nodes and the nodes of the corresponding Gauss rule $G_\ell$ with $\ell$ nodes form a subset. This is similar to the situation for the $(2\ell +1)$-point Gauss-Kronrod rule $H_{2\ell +1}$ associated with $G_\ell$. An attractive feature of $\widehat G_{2\ell +1}$ is that it exists also when $H_{2\ell +1}$ does not. The numerical construction, on the basis of recently proposed effective numerical procedures, of $\widehat G_{2\ell +1}$ is simpler than the construction of $H_{2\ell +1}$. A disadvantage might be that the algebraic degree of precision of $\widehat G_{2\ell +1}$ is $2\ell +2$, while the one of $H_{2\ell +1}$ is $3\ell +1$. Consider a (nonnegative) measure $d\sigma$ with support in the bounded interval $[a,b]$ such that the respective orthogonal polynomials, above a specific index $r$, satisfy a three-term recurrence relation with constant coefficients. For $\ell \ge 2r-1$, we show that $\widehat G_{2\ell +1}$ has algebraic degree of precision at least $3\ell +1$, and therefore it is in fact $H_{2\ell +1}$ associated with $G_\ell$. We derive some interesting equalities for the corresponding orthogonal polynomials.## References

- D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel,
*Computation of Gauss-Kronrod quadrature rules*, Math. Comp.**69**(2000), no. 231, 1035–1052. MR**1677474**, DOI 10.1090/S0025-5718-00-01174-1 - T. S. Chihara,
*An introduction to orthogonal polynomials*, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR**0481884** - Dušan Lj. Djukić, Lothar Reichel, and Miodrag M. Spalević,
*Truncated generalized averaged Gauss quadrature rules*, J. Comput. Appl. Math.**308**(2016), 408–418. MR**3523014**, DOI 10.1016/j.cam.2016.06.016 - C. F. Gauss,
*Methodus nova integralium valores per approximationem inveniendi*, Commentationes Societatis Regiae Scientiarum Göttingensis Recentiores**3**(1814). Also in Werke III, 163–196. - Walter Gautschi,
*Orthogonal polynomials: computation and approximation*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR**2061539** - W. Gautschi,
*OPQ suite*(http://www.cs.purdue.edu/archives/2001/wxg/codes). - Walter Gautschi,
*A historical note on Gauss-Kronrod quadrature*, Numer. Math.**100**(2005), no. 3, 483–484. MR**2195449**, DOI 10.1007/s00211-005-0592-7 - Walter Gautschi and Sotorios E. Notaris,
*Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szegő type*, J. Comput. Appl. Math.**25**(1989), no. 2, 199–224. MR**988057**, DOI 10.1016/0377-0427(89)90047-2 - Walter Gautschi and Sotirios E. Notaris,
*Stieltjes polynomials and related quadrature formulae for a class of weight functions*, Math. Comp.**65**(1996), no. 215, 1257–1268. MR**1344614**, DOI 10.1090/S0025-5718-96-00732-6 - Walter Gautschi and Theodore J. Rivlin,
*A family of Gauss-Kronrod quadrature formulae*, Math. Comp.**51**(1988), no. 184, 749–754. MR**958640**, DOI 10.1090/S0025-5718-1988-0958640-X - Gene H. Golub and John H. Welsch,
*Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230; addendum, ibid.**23**(1969), no. 106, loose microfiche suppl, A1–A10. MR**0245201**, DOI 10.1090/S0025-5718-69-99647-1 - Carl Jagels, Lothar Reichel, and Tunan Tang,
*Generalized averaged Szegő quadrature rules*, J. Comput. Appl. Math.**311**(2017), 645–654. MR**3552731**, DOI 10.1016/j.cam.2016.08.038 - D. K. Kahaner and G. Monegato,
*Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights*, Z. Angew. Math. Phys.**29**(1978), no. 6, 983–986 (English, with German summary). MR**523866**, DOI 10.1007/BF01590820 - A. S. Kronrod,
*Integration with control of accuracy*, Soviet Physics Dokl.**9**(1964), 17–19. MR**0199960** - Dirk P. Laurie,
*Calculation of Gauss-Kronrod quadrature rules*, Math. Comp.**66**(1997), no. 219, 1133–1145. MR**1422788**, DOI 10.1090/S0025-5718-97-00861-2 - Attila Máté, Paul Nevai, and Walter Van Assche,
*The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators*, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 501–527. MR**1113940**, DOI 10.1216/rmjm/1181073020 - Giovanni Monegato,
*An overview of the computational aspects of Kronrod quadrature rules*, Numer. Algorithms**26**(2001), no. 2, 173–196. MR**1829797**, DOI 10.1023/A:1016640617732 - Franz Peherstorfer,
*On positive quadrature formulas*, Numerical integration, IV (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993, pp. 297–313. MR**1248412** - Franz Peherstorfer,
*Positive quadrature formulas. III. Asymptotics of weights*, Math. Comp.**77**(2008), no. 264, 2241–2259. MR**2429883**, DOI 10.1090/S0025-5718-08-02119-4 - Franz Peherstorfer and Knut Petras,
*Ultraspherical Gauss-Kronrod quadrature is not possible for $\lambda >3$*, SIAM J. Numer. Anal.**37**(2000), no. 3, 927–948. MR**1749243**, DOI 10.1137/S0036142998327744 - Franz Peherstorfer and Knut Petras,
*Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions*, Numer. Math.**95**(2003), no. 4, 689–706. MR**2013124**, DOI 10.1007/s00211-002-0412-2 - Lothar Reichel, Giuseppe Rodriguez, and Tunan Tang,
*New block quadrature rules for the approximation of matrix functions*, Linear Algebra Appl.**502**(2016), 299–326. MR**3490795**, DOI 10.1016/j.laa.2015.07.007 - Lothar Reichel, Miodrag M. Spalević, and Tunan Tang,
*Generalized averaged Gauss quadrature rules for the approximation of matrix functionals*, BIT**56**(2016), no. 3, 1045–1067. MR**3540471**, DOI 10.1007/s10543-015-0592-7 - Miodrag M. Spalević,
*On generalized averaged Gaussian formulas*, Math. Comp.**76**(2007), no. 259, 1483–1492. MR**2299784**, DOI 10.1090/S0025-5718-07-01975-8 - Miodrag M. Spalević,
*A note on generalized averaged Gaussian formulas*, Numer. Algorithms**46**(2007), no. 3, 253–264. MR**2374184**, DOI 10.1007/s11075-007-9137-8 - H. S. Wilf,
*Mathematics for the Physical Sciences*, Wiley, New York, 1962.

## Additional Information

**Miodrag M. Spalević**- Affiliation: Department of Mathematics, University of Beograd, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia
- MR Author ID: 600543
- Email: mspalevic@mas.bg.ac.rs
- Received by editor(s): February 13, 2016
- Published electronically: November 8, 2016
- Additional Notes: The author was supported in part by the Serbian Ministry of Science and Technological Development
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp.
**86**(2017), 1877-1885 - MSC (2010): Primary 65D30, 65D32; Secondary 41A55
- DOI: https://doi.org/10.1090/mcom/3225
- MathSciNet review: 3626541