Toward a theory of monomial preorders
HTML articles powered by AMS MathViewer
- by Gregor Kemper, Ngo Viet Trung and Nguyen Thi Van Anh;
- Math. Comp. 87 (2018), 2513-2537
- DOI: https://doi.org/10.1090/mcom/3289
- Published electronically: December 28, 2017
- PDF | Request permission
Abstract:
In this paper we develop a theory of monomial preorders, which differ from the classical notion of monomial orders in that they allow ties between monomials. Since for monomial preorders, the leading ideal is less degenerate than for monomial orders, our results can be used to study problems where monomial orders fail to give a solution. Some of our results are new even in the classical case of monomial orders and in the special case in which the leading ideal defines the tangent cone.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- W. Bruns and A. Conca, Gröbner bases, initial ideals and initial algebras, In: L.L. Avramov et al. (Hrsg.), Homological Methods in Commutative Algebra, IPM Proceedings, Teheran, 2004.
- Maria Pia Cavaliere and Gianfranco Niesi, On Serre’s conditions in the form ring of an ideal, J. Math. Kyoto Univ. 21 (1981), no. 3, 537–546. MR 629783, DOI 10.1215/kjm/1250521977
- Giulio Caviglia, The pinched Veronese is Koszul, J. Algebraic Combin. 30 (2009), no. 4, 539–548. MR 2563140, DOI 10.1007/s10801-009-0176-1
- Aldo Conca, Reduction numbers and initial ideals, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1015–1020. MR 1948090, DOI 10.1090/S0002-9939-02-06607-8
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Günter Ewald and Masa-Nori Ishida, Completion of real fans and Zariski-Riemann spaces, Tohoku Math. J. (2) 58 (2006), no. 2, 189–218. MR 2248429
- Vesselin Gasharov, Noam Horwitz, and Irena Peeva, Hilbert functions over toric rings, Michigan Math. J. 57 (2008), 339–357. Special volume in honor of Melvin Hochster. MR 2492457, DOI 10.1307/mmj/1220879413
- Pedro D. González Pérez and Bernard Teissier, Toric geometry and the Semple-Nash modification, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014), no. 1, 1–48. MR 3183106, DOI 10.1007/s13398-012-0096-0
- Silvio Greco and Maria Grazia Marinari, Nagata’s criterion and openness of loci for Gorenstein and complete intersection, Math. Z. 160 (1978), no. 3, 207–216. MR 491741, DOI 10.1007/BF01237034
- G.-M. Greuel and G. Pfister, Advances and improvements in the theory of standard bases and syzygies, Arch. Math. (Basel) 66 (1996), no. 2, 163–176. MR 1367159, DOI 10.1007/BF01273348
- Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Second, extended edition, Springer, Berlin, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2363237
- A. Grothendieck, Éléments de géométrie algébrique IV (Seconde Partie), Publications Mathématiques 24, Institut des Hautes Études Scientifiques, 1965.
- Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193. MR 269762, DOI 10.1007/BF01273309
- Craig Huneke, Lectures on local cohomology, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 51–99. Appendix 1 by Amelia Taylor. MR 2355770, DOI 10.1090/conm/436/08404
- Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365–376. MR 1363769, DOI 10.1006/aima.1995.1071
- Gregor Kemper and Ngo Viet Trung, Krull dimension and monomial orders, J. Algebra 399 (2014), 782–800. MR 3144612, DOI 10.1016/j.jalgebra.2013.10.005
- Heinz Kredel and Volker Weispfenning, Computing dimension and independent sets for polynomial ideals, J. Symbolic Comput. 6 (1988), no. 2-3, 231–247. Computational aspects of commutative algebra. MR 988415, DOI 10.1016/S0747-7171(88)80045-2
- Martin Kreuzer and Lorenzo Robbiano, Computational commutative algebra. 2, Springer-Verlag, Berlin, 2005. MR 2159476
- Ferdinando Mora, An algorithm to compute the equations of tangent cones, Computer algebra (Marseille, 1982) Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin-New York, 1982, pp. 158–165. MR 680065
- Teo Mora, Solving polynomial equation systems. II, Encyclopedia of Mathematics and its Applications, vol. 99, Cambridge University Press, Cambridge, 2005. Macaulay’s paradigm and Gröbner technology. MR 2164357, DOI 10.1017/CBO9781107340954
- Teo Mora and Lorenzo Robbiano, The Gröbner fan of an ideal, J. Symbolic Comput. 6 (1988), no. 2-3, 183–208. Computational aspects of commutative algebra. MR 988412, DOI 10.1016/S0747-7171(88)80042-7
- Edward Mosteig and Moss Sweedler, Valuations and filtrations, J. Symbolic Comput. 34 (2002), no. 5, 399–435. MR 1937467, DOI 10.1006/jsco.2002.0565
- Lorenzo Robbiano, Term orderings on the polynomial ring, EUROCAL ’85, Vol. 2 (Linz, 1985) Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin, 1985, pp. 513–517. MR 826583, DOI 10.1007/3-540-15984-3_{3}21
- Lorenzo Robbiano, On the theory of graded structures, J. Symbolic Comput. 2 (1986), no. 2, 139–170. MR 849048, DOI 10.1016/S0747-7171(86)80019-0
- Enrico Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), no. 12, 5383–5409. MR 1872238, DOI 10.1081/AGB-100107934
- Adam S. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36 (2004), no. 4, 519–526. MR 2069015, DOI 10.1112/S0024609303003060
- Toshio Sumi, Mitsuhiro Miyazaki, and Toshio Sakata, Typical ranks for 3-tensors, nonsingular bilinear maps and determinantal ideals, J. Algebra 471 (2017), 409–453. MR 3569191, DOI 10.1016/j.jalgebra.2016.09.028
- Ngô Viêt Trung, Constructive characterization of the reduction numbers, Compositio Math. 137 (2003), no. 1, 99–113. MR 1981939, DOI 10.1023/A:1013940219415
- Matteo Varbaro, Gröbner deformations, connectedness and cohomological dimension, J. Algebra 322 (2009), no. 7, 2492–2507. MR 2553691, DOI 10.1016/j.jalgebra.2009.01.018
- Wolmer V. Vasconcelos, Cohomological degrees of graded modules, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR 1648669
Bibliographic Information
- Gregor Kemper
- Affiliation: Technische Universiät München, Zentrum Mathematik - M11, Boltzmannstr. 3, 85748 Garching, Germany
- MR Author ID: 608681
- Email: kemper@ma.tum.de
- Ngo Viet Trung
- Affiliation: Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@math.ac.vn
- Nguyen Thi Van Anh
- Affiliation: University of Osnabrück, Institut für Mathematik, Albrechtstr. 28 A, 49076 Osnabrück, Germany
- Email: ngthvanh@gmail.com
- Received by editor(s): September 16, 2016
- Received by editor(s) in revised form: April 12, 2017
- Published electronically: December 28, 2017
- Additional Notes: The second author was supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.04-2017.19 and the Project VAST.HTQT.NHAT.1/16-18. A large part of the paper was completed during a long term visit of the second author to Vietnam Institute for Advanced Study in Mathematics.
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2513-2537
- MSC (2010): Primary 13P10; Secondary 14Qxx, 13H10
- DOI: https://doi.org/10.1090/mcom/3289
- MathSciNet review: 3802444