Strong-stability-preserving additive linear multistep methods
HTML articles powered by AMS MathViewer
- by Yiannis Hadjimichael and David I. Ketcheson;
- Math. Comp. 87 (2018), 2295-2320
- DOI: https://doi.org/10.1090/mcom/3296
- Published electronically: February 20, 2018
- PDF | Request permission
Abstract:
The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain larger monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding nonadditive SSP linear multistep methods.References
- R. Donat, I. Higueras, and A. Martínez-Gavara, On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms, Math. Comp. 80 (2011), no. 276, 2097–2126. MR 2813350, DOI 10.1090/S0025-5718-2011-02463-4
- Thor Gjesdal, Implicit-explicit methods based on strong stability preserving multistep time discretizations, Appl. Numer. Math. 57 (2007), no. 8, 911–919. MR 2331084, DOI 10.1016/j.apnum.2006.09.001
- Sigal Gottlieb, David Ketcheson, and Chi-Wang Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2789749, DOI 10.1142/7498
- Sigal Gottlieb and Steven J. Ruuth, Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations, J. Sci. Comput. 27 (2006), no. 1-3, 289–303. MR 2285782, DOI 10.1007/s10915-005-9054-8
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR 1927606, DOI 10.1137/1.9780898718027
- Inmaculada Higueras, Strong stability for additive Runge-Kutta methods, SIAM J. Numer. Anal. 44 (2006), no. 4, 1735–1758. MR 2257125, DOI 10.1137/040612968
- I. Higueras, Positivity properties for the classical fourth order Runge-Kutta method, Proceedings of the MCalv6(5) Conference, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, vol. 33, Acad. Cienc. Exact. Fís. Quím. Nat. Zaragoza, Zaragoza, 2010, pp. 125–139. MR 3346421
- Willem Hundsdorfer and Steven J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys. 225 (2007), no. 2, 2016–2042. MR 2349693, DOI 10.1016/j.jcp.2007.03.003
- Willem Hundsdorfer, Steven J. Ruuth, and Raymond J. Spiteri, Monotonicity-preserving linear multistep methods, SIAM J. Numer. Anal. 41 (2003), no. 2, 605–623. MR 2004190, DOI 10.1137/S0036142902406326
- David I. Ketcheson, Computation of optimal monotonicity preserving general linear methods, Math. Comp. 78 (2009), no. 267, 1497–1513. MR 2501060, DOI 10.1090/S0025-5718-09-02209-1
- David I. Ketcheson, Step sizes for strong stability preservation with downwind-biased operators, SIAM J. Numer. Anal. 49 (2011), no. 4, 1649–1660. MR 2831065, DOI 10.1137/100818674
- H. W. J. Lenferink, Contractivity preserving explicit linear multistep methods, Numer. Math. 55 (1989), no. 2, 213–223. MR 987386, DOI 10.1007/BF01406515
- H. W. J. Lenferink, Contractivity-preserving implicit linear multistep methods, Math. Comp. 56 (1991), no. 193, 177–199. MR 1052098, DOI 10.1090/S0025-5718-1991-1052098-0
- R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. Comput. Phys. 86 (1990), no. 1, 187–210. MR 1033905, DOI 10.1016/0021-9991(90)90097-K
- Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 492671
- Olavi Nevanlinna and Werner Liniger, Contractive methods for stiff differential equations. I, BIT 18 (1978), no. 4, 457–474. MR 520755, DOI 10.1007/BF01932025
- R. T. Rockafellar, Convex Analysis, Princeton University Press, 1996.
- Steven J. Ruuth and Willem Hundsdorfer, High-order linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys. 209 (2005), no. 1, 226–248. MR 2145787, DOI 10.1016/j.jcp.2005.02.029
- Jørgen Sand, Circle contractive linear multistep methods, BIT 26 (1986), no. 1, 114–122. MR 833836, DOI 10.1007/BF01939367
- Chi-Wang Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073–1084. MR 963855, DOI 10.1137/0909073
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471. MR 954915, DOI 10.1016/0021-9991(88)90177-5
- M. N. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math. 42 (1983), no. 3, 271–290. MR 723625, DOI 10.1007/BF01389573
Bibliographic Information
- Yiannis Hadjimichael
- Affiliation: 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Address at time of publication: Eötvös Loránd University, MTA-ELTE Numerical Analysis and Large Networks Research Group, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; and Budapest University of Technology and Economics, Department of Differential Equations, Building H, Egry József utca 1, Budapest H-1111, Hungary
- MR Author ID: 1029413
- Email: hadjimy@cs.elte.hu
- David I. Ketcheson
- Affiliation: 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Email: david.ketcheson@kaust.edu.sa
- Received by editor(s): April 5, 2016
- Received by editor(s) in revised form: December 6, 2016, and April 18, 2017
- Published electronically: February 20, 2018
- Additional Notes: This work was supported by the King Abdullah University of Science and Technology (KAUST), 4700 Thuwal, 23955-6900, Saudi Arabia
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2295-2320
- MSC (2010): Primary 65L06; Secondary 65L05, 65M20
- DOI: https://doi.org/10.1090/mcom/3296
- MathSciNet review: 3802436