Schottky algorithms: Classical meets tropical
HTML articles powered by AMS MathViewer
- by Lynn Chua, Mario Kummer and Bernd Sturmfels;
- Math. Comp. 88 (2019), 2541-2558
- DOI: https://doi.org/10.1090/mcom/3406
- Published electronically: December 27, 2018
- HTML | PDF | Request permission
Abstract:
We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky–Igusa modular form.References
- Barbara Bolognese, Madeline Brandt, and Lynn Chua, From curves to tropical Jacobians and back, Combinatorial algebraic geometry, Fields Inst. Commun., vol. 80, Fields Inst. Res. Math. Sci., Toronto, ON, 2017, pp. 21–45. MR 3752493
- Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the tropical Torelli map, Adv. Math. 226 (2011), no. 3, 2546–2586. MR 2739784, DOI 10.1016/j.aim.2010.09.011
- Melody Chan, Combinatorics of the tropical Torelli map, Algebra Number Theory 6 (2012), no. 6, 1133–1169. MR 2968636, DOI 10.2140/ant.2012.6.1133
- Francesco Dalla Piazza, Alessio Fiorentino, and Riccardo Salvati Manni, Plane quartics: the universal matrix of bitangents, Israel J. Math. 217 (2017), no. 1, 111–138. MR 3625106, DOI 10.1007/s11856-017-1440-z
- Bernard Deconinck, Matthias Heil, Alexander Bobenko, Mark van Hoeij, and Marcus Schmies, Computing Riemann theta functions, Math. Comp. 73 (2004), no. 247, 1417–1442. MR 2047094, DOI 10.1090/S0025-5718-03-01609-0
- Bernard Deconinck and Mark van Hoeij, Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001), 28–46. Advances in nonlinear mathematics and science. MR 1837895, DOI 10.1016/S0167-2789(01)00156-7
- M. Dutour Sikirić, Polyhedral, a GAP package, mathieudutour.altervista.org/Polyhedral, 2013.
- Mathieu Dutour Sikirić, Alexey Garber, Achill Schürmann, and Clara Waldmann, The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices, Acta Crystallogr. Sect. A 72 (2016), no. 6, 673–683. MR 3573502, DOI 10.1107/s2053273316011682
- Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. MR 1785292
- Alain Ghouila-Houri, Caractérisation des matrices totalement unimodulaires, C. R. Acad. Sci. Paris 254 (1962), 1192–1194 (French). MR 132752
- Samuel Grushevsky, The Schottky problem, Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 129–164. MR 2931868
- Samuel Grushevsky and Martin Möller, Explicit formulas for infinitely many Shimura curves in genus 4, Asian J. Math. 22 (2018), no. 2, 381–390. MR 3824574, DOI 10.4310/ajm.2018.v22.n2.a12
- Christian Haase, Gregg Musiker, and Josephine Yu, Linear systems on tropical curves, Math. Z. 270 (2012), no. 3-4, 1111–1140. MR 2892941, DOI 10.1007/s00209-011-0844-4
- Jonathan D. Hauenstein and Andrew J. Sommese, What is numerical algebraic geometry? [Foreword]. part 3, J. Symbolic Comput. 79 (2017), no. part 3, 499–507. MR 3563094, DOI 10.1016/j.jsc.2016.07.015
- Jun-ichi Igusa, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 531–545 (1982). MR 656035
- E. Jones et al., SciPy: Open source scientific tools for Python, 2001-, http://www.scipy.org/.
- George R. Kempf, The equations defining a curve of genus $4$, Proc. Amer. Math. Soc. 97 (1986), no. 2, 219–225. MR 835869, DOI 10.1090/S0002-9939-1986-0835869-2
- Bo Lin, Computing linear systems on metric graphs, J. Symbolic Comput. 87 (2018), 54–67. MR 3744339, DOI 10.1016/j.jsc.2017.05.007
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- John Christian Ottem, Kristian Ranestad, Bernd Sturmfels, and Cynthia Vinzant, Quartic spectrahedra, Math. Program. 151 (2015), no. 2, Ser. B, 585–612. MR 3348164, DOI 10.1007/s10107-014-0844-3
- W. Plesken and B. Souvignier, isom and autom, 1995, published under GPL licence at http://www.math.uni-rostock.de/$\sim$waldmann/ISOM_and_AUTO.zip
- Qingchun Ren, Steven V. Sam, Gus Schrader, and Bernd Sturmfels, The universal Kummer threefold, Exp. Math. 22 (2013), no. 3, 327–362. MR 3171096, DOI 10.1080/10586458.2013.816206
- F. Schottky, Zur Theorie der Abelschen Functionen von vier Variabeln, J. Reine Angew. Math. 102 (1888), 304–352 (German). MR 1580147, DOI 10.1515/crll.1888.102.304
- Christopher Swierczewski and Bernard Deconinck, Computing Riemann theta functions in Sage with applications, Math. Comput. Simulation 127 (2016), 263–272. MR 3501304, DOI 10.1016/j.matcom.2013.04.018
- C. Swierczewski et al., Abelfunctions: A library for computing with Abelian functions, Riemann surfaces, and algebraic curves, github.com/abelfunctions/abelfunctions, 2016.
- W. T. Tutte, An algorithm for determining whether a given binary matroid is graphic, Proc. Amer. Math. Soc. 11 (1960), 905–917. MR 117173, DOI 10.1090/S0002-9939-1960-0117173-5
- F. Vallentin, Sphere covering, lattices, and tilings (in low dimensions), PhD thesis, TU München, 2003.
- Georges Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs, J. Reine Angew. Math. 134 (1908), 198–287 (French). MR 1580754, DOI 10.1515/crll.1908.134.198
Bibliographic Information
- Lynn Chua
- Affiliation: Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720
- MR Author ID: 1037521
- Email: chualynn@berkeley.edu
- Mario Kummer
- Affiliation: Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany
- Email: kummer@tu-berlin.de
- Bernd Sturmfels
- Affiliation: Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany; and Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
- MR Author ID: 238151
- Email: bernd@mis.mpg.edu, bernd@berkeley.edu
- Received by editor(s): July 26, 2017
- Received by editor(s) in revised form: September 30, 2018
- Published electronically: December 27, 2018
- Additional Notes: The first author was supported by a UC Berkeley University Fellowship and the Max Planck Institute for Mathematics in the Sciences, Leipzig.
The third author received funding from the US National Science Foundation (DMS-1419018) and the Einstein Foundation Berlin. - © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2541-2558
- MSC (2010): Primary 14H42, 14T05; Secondary 51M10, 14A40
- DOI: https://doi.org/10.1090/mcom/3406
- MathSciNet review: 3957905