An optimal adaptive Fictitious Domain Method
HTML articles powered by AMS MathViewer
- by Stefano Berrone, Andrea Bonito, Rob Stevenson and Marco Verani;
- Math. Comp. 88 (2019), 2101-2134
- DOI: https://doi.org/10.1090/mcom/3414
- Published electronically: February 22, 2019
- HTML | PDF | Request permission
Abstract:
We consider a fictitious domain formulation of an elliptic partial differential equation and approximate the resulting saddle-point system using a nested inexact preconditioned Uzawa iterative algorithm, which consists of three nested loops. In the outer loop the trial space for the Galerkin approximation of the Lagrange multiplier is enlarged. The intermediate loop solves this Galerkin system by a damped preconditioned Richardson iteration. Each iteration of the latter involves solving an elliptic problem on the fictitious domain whose solution is approximated by an adaptive finite element method in the inner loop. We prove that the overall method converges with the best possible rate and illustrate numerically our theoretical findings.References
- Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179–192. MR 359352, DOI 10.1007/BF01436561
- Ivo Babuška, The finite element method with penalty, Math. Comp. 27 (1973), 221–228. MR 351118, DOI 10.1090/S0025-5718-1973-0351118-5
- Constantin Bacuta, A unified approach for Uzawa algorithms, SIAM J. Numer. Anal. 44 (2006), no. 6, 2633–2649. MR 2272609, DOI 10.1137/050630714
- Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto, An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition, SIAM J. Numer. Anal. 40 (2002), no. 4, 1207–1229. MR 1951892, DOI 10.1137/S0036142901392134
- Roland Becker and Shipeng Mao, An optimally convergent adaptive mixed finite element method, Numer. Math. 111 (2008), no. 1, 35–54. MR 2448202, DOI 10.1007/s00211-008-0180-8
- Stefano Berrone, Andrea Bonito, and Marco Verani, An adaptive fictitious domain method for elliptic problems, Advances in discretization methods, SEMA SIMAI Springer Ser., vol. 12, Springer, [Cham], 2016, pp. 229–244. MR 3585416
- S. Berrone, A. Bonito, R. Stevenson, and M. Verani, An optimal adaptive fictitious domain method, arXiv:1712.09281v1, 2017.
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- Peter Binev, Wolfgang Dahmen, Ronald DeVore, and Pencho Petrushev, Approximation classes for adaptive methods, Serdica Math. J. 28 (2002), no. 4, 391–416. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday. MR 1965238
- Daniele Boffi and Lucia Gastaldi, A finite element approach for the immersed boundary method, Comput. & Structures 81 (2003), no. 8-11, 491–501. In honour of Klaus-Jürgen Bathe. MR 2001876, DOI 10.1016/S0045-7949(02)00404-2
- Christoph Börgers and Olof B. Widlund, On finite element domain imbedding methods, SIAM J. Numer. Anal. 27 (1990), no. 4, 963–978. MR 1051116, DOI 10.1137/0727055
- Erik Burman and Peter Hansbo, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 41-44, 2680–2686. MR 2728820, DOI 10.1016/j.cma.2010.05.011
- Erik Burman and Peter Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math. 62 (2012), no. 4, 328–341. MR 2899249, DOI 10.1016/j.apnum.2011.01.008
- James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997), no. 3, 1072–1092. MR 1451114, DOI 10.1137/S0036142994273343
- C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. MR 3170325, DOI 10.1016/j.camwa.2013.12.003
- Carsten Carstensen, Dietmar Gallistl, and Mira Schedensack, Quasi-optimal adaptive pseudostress approximation of the Stokes equations, SIAM J. Numer. Anal. 51 (2013), no. 3, 1715–1734. MR 3066804, DOI 10.1137/110852346
- C. Carstensen, M. Maischak, and E. P. Stephan, A posteriori error estimate and $h$-adaptive algorithm on surfaces for Symm’s integral equation, Numer. Math. 90 (2001), no. 2, 197–213. MR 1872725, DOI 10.1007/s002110100287
- Carsten Carstensen and Hella Rabus, An optimal adaptive mixed finite element method, Math. Comp. 80 (2011), no. 274, 649–667. MR 2772091, DOI 10.1090/S0025-5718-2010-02397-X
- Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587. MR 1706735, DOI 10.1137/S003614299732334X
- Long Chen, Michael Holst, and Jinchao Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comp. 78 (2009), no. 265, 35–53. MR 2448696, DOI 10.1090/S0025-5718-08-02155-8
- Philippe G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. MR 1930132, DOI 10.1137/1.9780898719208
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto, Convergence rates of AFEM with $H^{-1}$ data, Found. Comput. Math. 12 (2012), no. 5, 671–718. MR 2970853, DOI 10.1007/s10208-012-9120-1
- Albert Cohen, Wolfgang Dahmen, and Gerrit Welper, Adaptivity and variational stabilization for convection-diffusion equations, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 5, 1247–1273. MR 2916380, DOI 10.1051/m2an/2012003
- J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs, Isogeometric analysis, John Wiley & Sons, Ltd., Chichester, 2009. Toward integration of CAD and FEA. MR 3618875, DOI 10.1002/9780470749081
- Stephan Dahlke, Wolfgang Dahmen, and Karsten Urban, Adaptive wavelet methods for saddle point problems—optimal convergence rates, SIAM J. Numer. Anal. 40 (2002), no. 4, 1230–1262. MR 1951893, DOI 10.1137/S003614290139233X
- W. Dahmen, B. Faermann, I. G. Graham, W. Hackbusch, and S. A. Sauter, Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method, Math. Comp. 73 (2004), no. 247, 1107–1138. MR 2047080, DOI 10.1090/S0025-5718-03-01583-7
- J. Donéa, S. Giuliani, and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 33 (1982), nos. 1–3, 689 – 723.
- Birgit Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case, IMA J. Numer. Anal. 20 (2000), no. 2, 203–234. MR 1752263, DOI 10.1093/imanum/20.2.203
- Michael Feischl, Thomas Führer, Dirk Praetorius, and Ernst P. Stephan, Optimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements, Numer. Methods Partial Differential Equations 33 (2017), no. 3, 603–632. MR 3634453, DOI 10.1002/num.22025
- T. Führer, A. Haberl, D. Praetorius, and S. Schimanko, Adaptive bem with inexact pcg solver yields almost optimal computational costs, Numer. Math., DOI 10.1007/s00211-018-1011-1.
- Thomas Führer and Dirk Praetorius, A linear Uzawa-type FEM-BEM solver for nonlinear transmission problems, Comput. Math. Appl. 75 (2018), no. 8, 2678–2697. MR 3787479, DOI 10.1016/j.camwa.2017.12.035
- V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math. 12 (1995), no. 3, 487–514 (English, with English and French summaries). MR 1356667, DOI 10.1007/BF03167240
- Roland Glowinski, Tsorng-Whay Pan, and Jacques Périaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg. 111 (1994), no. 3-4, 283–303. MR 1259864, DOI 10.1016/0045-7825(94)90135-X
- R. Hiptmair, Operator preconditioning, Comput. Math. Appl. 52 (2006), no. 5, 699–706. MR 2275559, DOI 10.1016/j.camwa.2006.10.008
- C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J. Comput. Phys. 14 (1974), no. 3, 227–253], J. Comput. Phys. 135 (1997), no. 2, 198–216. With an introduction by L. G. Margolin; Commemoration of the 30th anniversary {of J. Comput. Phys.}. MR 1486272, DOI 10.1006/jcph.1997.5702
- Thomas J. R. Hughes, Wing Kam Liu, and Thomas K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg. 29 (1981), no. 3, 329–349. MR 659925, DOI 10.1016/0045-7825(81)90049-9
- Jun Hu and Guozhu Yu, A unified analysis of quasi-optimal convergence for adaptive mixed finite element methods, SIAM J. Numer. Anal. 56 (2018), no. 1, 296–316. MR 3749387, DOI 10.1137/16M105513X
- JianGuo Huang and YiFeng Xu, Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation, Sci. China Math. 55 (2012), no. 5, 1083–1098. MR 2912497, DOI 10.1007/s11425-012-4384-0
- Yaroslav Kondratyuk and Rob Stevenson, An optimal adaptive finite element method for the Stokes problem, SIAM J. Numer. Anal. 46 (2008), no. 2, 747–775. MR 2383210, DOI 10.1137/06066566X
- Mario S. Mommer, A smoothness preserving fictitious domain method for elliptic boundary-value problems, IMA J. Numer. Anal. 26 (2006), no. 3, 503–524. MR 2241312, DOI 10.1093/imanum/dri045
- J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, 1967.
- Ricardo H. Nochetto and Jae-Hong Pyo, Optimal relaxation parameter for the Uzawa method, Numer. Math. 98 (2004), no. 4, 695–702. MR 2099317, DOI 10.1007/s00211-004-0522-0
- P. Oswald, Multilevel norms for $H^{-1/2}$, Computing 61 (1998), no. 3, 235–255. MR 1660404, DOI 10.1007/BF02684352
- Charles S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479–517. MR 2009378, DOI 10.1017/S0962492902000077
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- R. P. Stevenson and R. van Venetië, Optimal preconditioning for problems of negative order, Technical report, Korteweg-de Vries Institute, 2018, submitted.
- R. P. Stevenson and R. van Venetië, Optimal preconditioners of linear complexity for problems of negative order discretized on locally refined meshes, in preparation.
Bibliographic Information
- Stefano Berrone
- Affiliation: Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- MR Author ID: 679290
- Email: stefano.berrone@polito.it
- Andrea Bonito
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 783728
- Email: bonito@math.tamu.edu
- Rob Stevenson
- Affiliation: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 310898
- Email: r.p.stevenson@uva.nl
- Marco Verani
- Affiliation: MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
- MR Author ID: 704488
- Email: marco.verani@polimi.it
- Received by editor(s): December 26, 2017
- Received by editor(s) in revised form: September 2, 2018, and November 2, 2018
- Published electronically: February 22, 2019
- Additional Notes: The first author was partially supported by INdAM-GNCS and HPC@polito.it
The second author was partially supported by NSF Grant DMS-1254618.
The fourth author was partially supported by INdAM-GNCS - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2101-2134
- MSC (2010): Primary 41A25, 42C40, 65N12, 65T60, 65M85, 65N30
- DOI: https://doi.org/10.1090/mcom/3414
- MathSciNet review: 3957888