Unconditionally energy stable fully discrete schemes for a chemo-repulsion model
HTML articles powered by AMS MathViewer
- by F. Guillén-González, M. A. Rodríguez-Bellido and D. A. Rueda-Gómez;
- Math. Comp. 88 (2019), 2069-2099
- DOI: https://doi.org/10.1090/mcom/3418
- Published electronically: March 11, 2019
- HTML | PDF | Request permission
Abstract:
This work is devoted to studying unconditionally energy stable and mass-conservative numerical schemes for the following repulsive-productive chemotaxis model: find $u \geq 0$, the cell density, and $v \geq 0$, the chemical concentration, such that \begin{equation*} \left \{ \begin {array} [c]{lll}\partial _t u - \Delta u - \nabla \cdot (u\nabla v)=0 \ \ \text {in}\ \Omega ,\ t>0,\\ \partial _t v - \Delta v + v = u \ \ \text {in}\ \Omega ,\ t>0, \end{array} \right . \end{equation*} in a bounded domain $\Omega \subseteq \mathbb {R}^d$, $d=2,3$. By using a regularization technique, we propose three fully discrete Finite Element (FE) approximations. The first one is a nonlinear approximation in the variables $(u,v)$; the second one is another nonlinear approximation obtained by introducing ${\boldsymbol \sigma }=\nabla v$ as an auxiliary variable; and the third one is a linear approximation constructed by mixing the regularization procedure with the energy quadratization technique, in which other auxiliary variables are introduced. In addition, we study the well-posedness of the numerical schemes, proving unconditional existence of solution, but conditional uniqueness (for the nonlinear schemes). Finally, we compare the behavior of such schemes throughout several numerical simulations and provide some conclusions.References
- Chérif Amrouche and Nour El Houda Seloula, $L^p$-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 37–92. MR 2997467, DOI 10.1142/S0218202512500455
- Santiago Badia, Francisco Guillén-González, and Juan Vicente Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys. 230 (2011), no. 4, 1686–1706. MR 2753385, DOI 10.1016/j.jcp.2010.11.033
- John W. Barrett and James F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model, Numer. Math. 98 (2004), no. 2, 195–221. MR 2092740, DOI 10.1007/s00211-004-0540-y
- Roland Becker, Xiaobing Feng, and Andreas Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal. 46 (2008), no. 4, 1704–1731. MR 2399392, DOI 10.1137/07068254X
- Marianne Bessemoulin-Chatard and Ansgar Jüngel, A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal. 34 (2014), no. 1, 96–122. MR 3168280, DOI 10.1093/imanum/drs061
- Georges Chamoun, Mazen Saad, and Raafat Talhouk, Monotone combined edge finite volume–finite element scheme for anisotropic Keller-Segel model, Numer. Methods Partial Differential Equations 30 (2014), no. 3, 1030–1065. MR 3190349, DOI 10.1002/num.21858
- Tomasz Cieślak, Philippe Laurençot, and Cristian Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Parabolic and Navier-Stokes equations. Part 1, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warsaw, 2008, pp. 105–117. MR 2549326, DOI 10.4064/bc81-0-7
- Yekaterina Epshteyn and Ahmet Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput. 40 (2009), no. 1-3, 211–256. MR 2511733, DOI 10.1007/s10915-009-9281-5
- Francis Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math. 104 (2006), no. 4, 457–488. MR 2249674, DOI 10.1007/s00211-006-0024-3
- Gonzalo Galiano and Virginia Selgas, On a cross-diffusion segregation problem arising from a model of interacting particles, Nonlinear Anal. Real World Appl. 18 (2014), 34–49. MR 3176295, DOI 10.1016/j.nonrwa.2014.02.001
- F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part I: Analysis of the continuous problem and time-discrete numerical schemes, submitted.
- F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part II: Analysis of an unconditional energy-stable fully discrete scheme, submitted.
- Yinnian He and Kaitai Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem, Numer. Math. 98 (2004), no. 4, 647–673. MR 2099315, DOI 10.1007/s00211-004-0532-y
- Americo Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, M2AN Math. Model. Numer. Anal. 37 (2003), no. 4, 617–630. MR 2018433, DOI 10.1051/m2an:2003048
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 227584
- Norikazu Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal. 27 (2007), no. 2, 332–365. MR 2317007, DOI 10.1093/imanum/drl018
- Norikazu Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal. 11 (2012), no. 1, 339–364. MR 2833351, DOI 10.3934/cpaa.2012.11.339
- Xiaofeng Yang, Jia Zhao, and Qi Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys. 333 (2017), 104–127. MR 3599396, DOI 10.1016/j.jcp.2016.12.025
- Jiansong Zhang, Jiang Zhu, and Rongpei Zhang, Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models, Appl. Math. Comput. 278 (2016), 33–44. MR 3457640, DOI 10.1016/j.amc.2016.01.021
- Jia Zhao, Xiaofeng Yang, Yuezheng Gong, Xueping Zhao, Xiaogang Yang, Jun Li, and Qi Wang, A general strategy for numerical approximations of non-equilibrium models—part I: thermodynamical systems, Int. J. Numer. Anal. Model. 15 (2018), no. 6, 884–918. MR 3813735
- Jia Zhao, Xiaofeng Yang, Yuezheng Gong, and Qi Wang, A novel linear second order unconditionally energy stable scheme for a hydrodynamic $\mathbf {Q}$-tensor model of liquid crystals, Comput. Methods Appl. Mech. Engrg. 318 (2017), 803–825. MR 3627201, DOI 10.1016/j.cma.2017.01.031
Bibliographic Information
- F. Guillén-González
- Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla, Facultad de Matemáticas, C/ Tarfia, S/N, 41012 Sevilla, Spain
- MR Author ID: 326792
- Email: guillen@us.es
- M. A. Rodríguez-Bellido
- Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla, Facultad de Matemáticas, C/ Tarfia, S/N, 41012 Sevilla, Spain
- Email: angeles@us.es
- D. A. Rueda-Gómez
- Affiliation: Escuela de Matemáticas, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
- Email: diaruego@uis.edu.co
- Received by editor(s): July 3, 2018
- Received by editor(s) in revised form: November 13, 2018
- Published electronically: March 11, 2019
- Additional Notes: The authors were partially supported by MINECO grant MTM2015-69875-P (Ministerio de Economía y Competitividad, Spain) with the participation of FEDER
The third author was also supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2069-2099
- MSC (2010): Primary 35K51, 35Q92, 65M12, 65M60, 92C17
- DOI: https://doi.org/10.1090/mcom/3418
- MathSciNet review: 3957887