Stability and finite element error analysis for the Helmholtz equation with variable coefficients
HTML articles powered by AMS MathViewer
- by I. G. Graham and S. A. Sauter;
- Math. Comp. 89 (2020), 105-138
- DOI: https://doi.org/10.1090/mcom/3457
- Published electronically: July 1, 2019
- HTML | PDF | Request permission
Abstract:
We discuss the stability theory and numerical analysis of the Helmholtz equation with variable and possibly nonsmooth or oscillatory coefficients. Using the unique continuation principle and the Fredholm alternative, we first give an existence-uniqueness result for this problem, which holds under rather general conditions on the coefficients and on the domain. Under additional assumptions, we derive estimates for the stability constant (i.e., the norm of the solution operator) in terms of the data (i.e., PDE coefficients and frequency), and we apply these estimates to obtain a new finite element error analysis for the Helmholtz equation which is valid at a high frequency and with variable wave speed. The central role played by the stability constant in this theory leads us to investigate its behaviour with respect to coefficient variation in detail. We give, via a 1D analysis, an a priori bound with the stability constant growing exponentially in the variance of the coefficients (wave speed and/or diffusion coefficient). Then, by means of a family of analytic examples (supplemented by numerical experiments), we show that this estimate is sharp.References
- Giovanni Alessandrini, Strong unique continuation for general elliptic equations in 2D, J. Math. Anal. Appl. 386 (2012), no. 2, 669–676. MR 2834777, DOI 10.1016/j.jmaa.2011.08.029
- Habib Ammari and Hai Zhang, Super-resolution in high-contrast media, Proc. A. 471 (2015), no. 2178, 20140946, 11. MR 3367310, DOI 10.1098/rspa.2014.0946
- A. K. Aziz, R. B. Kellogg, and A. B. Stephens, A two point boundary value problem with a rapidly oscillating solution, Numer. Math. 53 (1988), no. 1-2, 107–121. MR 946371, DOI 10.1007/BF01395880
- Ivo M. Babuška and Stefan A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev. 42 (2000), no. 3, 451–484. Reprint of SIAM J. Numer. Anal. 34 (1997), no. 6, 2392–2423 [ MR1480387 (99b:65135)]. MR 1786934, DOI 10.1137/S0036142994269186
- L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems, SIAM J. Numer. Anal. 45 (2007), no. 1, 37–53. MR 2285843, DOI 10.1137/060654177
- Hélène Barucq, Théophile Chaumont-Frelet, and Christian Gout, Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation, Math. Comp. 86 (2017), no. 307, 2129–2157. MR 3647953, DOI 10.1090/mcom/3165
- Mourad Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptot. Anal. 35 (2003), no. 3-4, 257–279. MR 2011790
- T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation, Numer. Methods Partial Differential Equations 27 (2011), no. 1, 31–69. MR 2743599, DOI 10.1002/num.20643
- Donald L. Brown, Dietmar Gallistl, and Daniel Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations, Meshfree methods for partial differential equations VIII, Lect. Notes Comput. Sci. Eng., vol. 115, Springer, Cham, 2017, pp. 85–115. MR 3718330, DOI 10.1007/978-3-319-51954-8_{6}
- Nicolas Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), no. 1, 1–29 (French). MR 1618254, DOI 10.1007/BF02392877
- Simon N. Chandler-Wilde, Ivan G. Graham, Stephen Langdon, and Euan A. Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numer. 21 (2012), 89–305. MR 2916382, DOI 10.1017/S0962492912000037
- T. Chaumont-Frelet. Finite element approximation of Helmholtz problems with application to seismic wave propagation. PhD thesis, INSA de Rouen, Rouen, 2015.
- Peter Cummings and Xiaobing Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Models Methods Appl. Sci. 16 (2006), no. 1, 139–160. MR 2194984, DOI 10.1142/S021820250600108X
- Willy Dörfler and Stefan Sauter, A posteriori error estimation for highly indefinite Helmholtz problems, Comput. Methods Appl. Math. 13 (2013), no. 3, 333–347. MR 3094621, DOI 10.1515/cmam-2013-0008
- Yu Du and Haijun Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal. 53 (2015), no. 2, 782–804. MR 3324975, DOI 10.1137/140953125
- S. Esterhazy and J. M. Melenk, On stability of discretizations of the Helmholtz equation, Numerical analysis of multiscale problems, Lect. Notes Comput. Sci. Eng., vol. 83, Springer, Heidelberg, 2012, pp. 285–324. MR 3050917, DOI 10.1007/978-3-642-22061-6_{9}
- Xiaobing Feng, Junshan Lin, and Cody Lorton, An efficient numerical method for acoustic wave scattering in random media, SIAM/ASA J. Uncertain. Quantif. 3 (2015), no. 1, 790–822. MR 3394366, DOI 10.1137/140958232
- N. Filonov, Second-order elliptic equation of divergence form having a compactly supported solution, J. Math. Sci. (New York) 106 (2001), no. 3, 3078–3086. Function theory and phase transitions. MR 1906035, DOI 10.1023/A:1011379807662
- M. J. Gander, I. G. Graham, and E. A. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math. 131 (2015), no. 3, 567–614. MR 3395145, DOI 10.1007/s00211-015-0700-2
- M. Ganesh and C. Morgenstern, High-order FEM-BEM computer models for wave propagation in unbounded and heterogeneous media: application to time-harmonic acoustic horn problem, J. Comput. Appl. Math. 307 (2016), 183–203. MR 3508849, DOI 10.1016/j.cam.2016.02.024
- M. Ganesh and C. Morgenstern, A coercive heterogeneous media Helmholtz model: formulation, wavenumber-explicit analysis, and preconditioned high-order FEM, Numer. Algorithms (2019), DOI: 10.1007/s11075-019-00732-8.
- Josselin Garnier and George Papanicolaou, Role of scattering in virtual source array imaging, SIAM J. Imaging Sci. 7 (2014), no. 2, 1210–1236. MR 3213797, DOI 10.1137/13094181X
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- I. G. Graham, O. R. Pembery, and E. A. Spence, The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, J. Differential Equations 266 (2019), no. 6, 2869–2923. MR 3912672, DOI 10.1016/j.jde.2018.08.048
- I. G. Graham, E. A. Spence, and E. Vainikko, Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption, Math. Comp. 86 (2017), no. 307, 2089–2127. MR 3647952, DOI 10.1090/mcom/3190
- Ivan G. Graham, Euan A. Spence, and Eero Vainikko, Recent results on domain decomposition preconditioning for the high-frequency Helmholtz equation using absorption, Modern solvers for Helmholtz problems, Geosyst. Math., Birkhäuser/Springer, Cham, 2017, pp. 3–26. MR 3644970
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Frank Ihlenburg, Finite element analysis of acoustic scattering, Applied Mathematical Sciences, vol. 132, Springer-Verlag, New York, 1998. MR 1639879, DOI 10.1007/b98828
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- Peter Kuchment (ed.), Waves in periodic and random media, Contemporary Mathematics, vol. 339, American Mathematical Society, Providence, RI, 2003. MR 2042526, DOI 10.1090/conm/339
- Rolf Leis, Initial-boundary value problems in mathematical physics, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 841971, DOI 10.1007/978-3-663-10649-4
- Ch. Makridakis, F. Ihlenburg, and I. Babuška, Analysis and finite element methods for a fluid-solid interaction problem in one dimension, Math. Models Methods Appl. Sci. 6 (1996), no. 8, 1119–1141. MR 1428148, DOI 10.1142/S0218202596000468
- Jens Markus Melenk, On generalized finite-element methods, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–University of Maryland, College Park. MR 2692949
- J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp. 79 (2010), no. 272, 1871–1914. MR 2684350, DOI 10.1090/S0025-5718-10-02362-8
- J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal. 49 (2011), no. 3, 1210–1243. MR 2812565, DOI 10.1137/090776202
- J. M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz problems, J. Sci. Comput. 57 (2013), no. 3, 536–581. MR 3123557, DOI 10.1007/s10915-013-9726-8
- C. S. Morawetz and D. Ludwig, An inequality for the reduced wave operator and the justification of geometrical optics, Comm. Pure Appl. Math. 21 (1968), 187–203. MR 223136, DOI 10.1002/cpa.3160210206
- Mario Ohlberger and Barbara Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast, Multiscale Model. Simul. 16 (2018), no. 1, 385–411. MR 3769687, DOI 10.1137/16M1108820
- Benoit Perthame and Luis Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164 (1999), no. 2, 340–355. MR 1695559, DOI 10.1006/jfan.1999.3391
- Benoit Perthame and Luis Vega, Energy concentration and Sommerfeld condition for Helmholtz equation with variable index at infinity, Geom. Funct. Anal. 17 (2008), no. 5, 1685–1707. MR 2377500, DOI 10.1007/s00039-007-0635-6
- Franz Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u=0$ durch ein Randintegral, Math. Z. 46 (1940), 635–636 (German). MR 2456, DOI 10.1007/BF01181459
- S. A. Sauter, A refined finite element convergence theory for highly indefinite Helmholtz problems, Computing 78 (2006), no. 2, 101–115. MR 2255368, DOI 10.1007/s00607-006-0177-z
- Stefan Sauter and Céline Torres, Stability estimate for the Helmholtz equation with rapidly jumping coefficients, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 139, 30. MR 3864702, DOI 10.1007/s00033-018-1031-9
- S. A. Sauter and C. Torres. Stability and instabilities for the heterogeneous Helmholtz equation in 1D. Technical Report; in preparation, Universität Zürich, 2018.
- Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
- E. A. Spence, Wavenumber-explicit bounds in time-harmonic acoustic scattering, SIAM J. Math. Anal. 46 (2014), no. 4, 2987–3024. MR 3252807, DOI 10.1137/130932855
- A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49 (1984), no. 8, 1259–1266.
- T. H. Wolff, A property of measures in $\textbf {R}^N$ and an application to unique continuation, Geom. Funct. Anal. 2 (1992), no. 2, 225–284. MR 1159832, DOI 10.1007/BF01896975
- Haijun Wu and Jun Zou, Finite element method and its analysis for a nonlinear Helmholtz equation with high wave numbers, SIAM J. Numer. Anal. 56 (2018), no. 3, 1338–1359. MR 3802272, DOI 10.1137/17M111314X
- Lingxue Zhu and Haijun Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: $hp$ version, SIAM J. Numer. Anal. 51 (2013), no. 3, 1828–1852. MR 3069093, DOI 10.1137/120874643
Bibliographic Information
- I. G. Graham
- Affiliation: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
- MR Author ID: 76020
- Email: i.g.graham@bath.ac.uk
- S. A. Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@math.uzh.ch
- Received by editor(s): March 2, 2018
- Received by editor(s) in revised form: October 11, 2018, and February 3, 2019
- Published electronically: July 1, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 105-138
- MSC (2010): Primary 35J05, 65N12, 65N15, 65N30
- DOI: https://doi.org/10.1090/mcom/3457
- MathSciNet review: 4011537