Energy-preserving methods on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Elena Celledoni, Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm;
- Math. Comp. 89 (2020), 699-716
- DOI: https://doi.org/10.1090/mcom/3470
- Published electronically: September 6, 2019
- HTML | PDF | Request permission
Abstract:
The energy-preserving discrete gradient methods are generalized to finite-dimensional Riemannian manifolds by definition of a discrete approximation to the Riemannian gradient, a retraction, and a coordinate center function. The resulting schemes are formulated only in terms of these three objects and do not otherwise depend on a particular choice of coordinates or embedding of the manifold in a Euclidean space. Generalizations of well-known discrete gradient methods, such as the average vector field method and the Itoh–Abe method, are obtained. It is shown how methods of higher order can be constructed via a collocation-like approach. Local and global error bounds are derived in terms of the Riemannian distance function and the Levi-Civita connection. Numerical results are presented, for problems on the two-sphere, the paraboloid, and the Stiefel manifold.References
- Roy L. Adler, Jean-Pierre Dedieu, Joseph Y. Margulies, Marco Martens, and Mike Shub, Newton’s method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal. 22 (2002), no. 3, 359–390. MR 1918655, DOI 10.1093/imanum/22.3.359
- Luigi Brugnano, Felice Iavernaro, and Donato Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5 (2010), no. 1-2, 17–37. MR 2833606
- Elena Celledoni, Sølve Eidnes, Brynjulf Owren, and Torbjørn Ringholm, Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows, SIAM J. Sci. Comput. 40 (2018), no. 6, A3789–A3806. MR 3876868, DOI 10.1137/18M1190628
- Elena Celledoni, Håkon Marthinsen, and Brynjulf Owren, An introduction to Lie group integrators—basics, new developments and applications. part B, J. Comput. Phys. 257 (2014), no. part B, 1040–1061. MR 3133432, DOI 10.1016/j.jcp.2012.12.031
- Elena Celledoni and Brynjulf Owren, Preserving first integrals with symmetric Lie group methods, Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 977–990. MR 3094556, DOI 10.3934/dcds.2014.34.977
- David Cohen and Ernst Hairer, Linear energy-preserving integrators for Poisson systems, BIT 51 (2011), no. 1, 91–101. MR 2784654, DOI 10.1007/s10543-011-0310-z
- P. E. Crouch and R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci. 3 (1993), no. 1, 1–33. MR 1216986, DOI 10.1007/BF02429858
- Alan Edelman, Tomás A. Arias, and Steven T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 303–353. MR 1646856, DOI 10.1137/S0895479895290954
- Jason Frank, Weizhang Huang, and Benedict Leimkuhler, Geometric integrators for classical spin systems, J. Comput. Phys. 133 (1997), no. 1, 160–172. MR 1445176, DOI 10.1006/jcph.1997.5672
- O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (1996), no. 5, 449–467. MR 1411343, DOI 10.1007/s003329900018
- Alistair Gray, Arthur Jones, and Russell Rimmer, Motion under gravity on a paraboloid, J. Differential Equations 45 (1982), no. 2, 168–181. MR 665994, DOI 10.1016/0022-0396(82)90063-8
- E. Hairer, Energy-preserving variant of collocation methods, JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5 (2010), no. 1-2, 73–84. MR 2833602
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002
- Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna, Lie-group methods, Acta numerica, 2000, Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 215–365. MR 1883629, DOI 10.1017/S0962492900002154
- Toshiaki Itoh and Kanji Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys. 76 (1988), no. 1, 85–102. MR 943488, DOI 10.1016/0021-9991(88)90132-5
- Michael Kunzinger, Hermann Schichl, Roland Steinbauer, and James A. Vickers, Global Gronwall estimates for integral curves on Riemannian manifolds, Rev. Mat. Complut. 19 (2006), no. 1, 133–137. MR 2219824, DOI 10.5209/rev_{R}EMA.2006.v19.n1.16639
- John M. Lee, Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer-Verlag, New York, 1997. An introduction to curvature. MR 1468735, DOI 10.1007/b98852
- Taeyoung Lee, Melvin Leok, and N. Harris McClamroch, Global formulations of Lagrangian and Hamiltonian dynamics on manifolds, Interaction of Mechanics and Mathematics, Springer, Cham, 2018. A geometric approach to modeling and analysis. MR 3699476, DOI 10.1007/978-3-319-56953-6
- B. Leimkuhler and G. W. Patrick, A symplectic integrator for Riemannian manifolds, J. Nonlinear Sci. 6 (1996), no. 4, 367–384. MR 1404143, DOI 10.1007/s003329900015
- D. Lewis and N. Nigam, Geometric integration on spheres and some interesting applications, J. Comput. Appl. Math. 151 (2003), no. 1, 141–170. MR 1950234, DOI 10.1016/S0377-0427(02)00743-4
- Robert McLachlan, Klas Modin, and Olivier Verdier, A minimal-variable symplectic integrator on spheres, Math. Comp. 86 (2017), no. 307, 2325–2344. MR 3647960, DOI 10.1090/mcom/3153
- R. I. McLachlan, K. Modin, and O. Verdier, Symplectic integrators for spin systems, Phys. Rev. E 89 (2014), no. 6, 061301.
- Robert I. McLachlan, G. R. W. Quispel, and Nicolas Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 1021–1045. MR 1694701, DOI 10.1098/rsta.1999.0363
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells. MR 163331
- Hans Z. Munthe-Kaas and Alexander Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math. 13 (2013), no. 4, 583–613. MR 3085679, DOI 10.1007/s10208-013-9167-7
- Hans Munthe-Kaas, Lie-Butcher theory for Runge-Kutta methods, BIT 35 (1995), no. 4, 572–587. MR 1431350, DOI 10.1007/BF01739828
- Hans Munthe-Kaas, Runge-Kutta methods on Lie groups, BIT 38 (1998), no. 1, 92–111. MR 1621080, DOI 10.1007/BF02510919
- G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A 41 (2008), no. 4, 045206, 7. MR 2451073, DOI 10.1088/1751-8113/41/4/045206
- E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. With an introduction to the problem of three bodies; Reprint of the 1937 edition; With a foreword by William McCrea. MR 992404, DOI 10.1017/CBO9780511608797
- Ralf Zimmermann, A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric, SIAM J. Matrix Anal. Appl. 38 (2017), no. 2, 322–342. MR 3639577, DOI 10.1137/16M1074485
Bibliographic Information
- Elena Celledoni
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, N–7491 Trondheim, Norway
- MR Author ID: 623033
- Email: elena.celledoni@ntnu.no
- Sølve Eidnes
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, N–7491 Trondheim, Norway
- Email: solve.eidnes@ntnu.no
- Brynjulf Owren
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, N–7491 Trondheim, Norway
- MR Author ID: 292686
- Email: brynjulf.owren@ntnu.no
- Torbjørn Ringholm
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, N–7491 Trondheim, Norway
- Email: ringholm@gmail.com
- Received by editor(s): May 24, 2018
- Received by editor(s) in revised form: January 17, 2019, and May 31, 2019
- Published electronically: September 6, 2019
- Additional Notes: This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 691070.
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 699-716
- MSC (2010): Primary 37K05; Secondary 53B99, 65L05
- DOI: https://doi.org/10.1090/mcom/3470
- MathSciNet review: 4044447