Generalized Jacobians and explicit descents
HTML articles powered by AMS MathViewer
- by Brendan Creutz;
- Math. Comp. 89 (2020), 1365-1394
- DOI: https://doi.org/10.1090/mcom/3491
- Published electronically: November 15, 2019
- HTML | PDF | Request permission
Abstract:
We develop a cohomological description of explicit descents in terms of generalized Jacobians, generalizing the known description for hyperelliptic curves. Specifically, given an integer $n$ dividing the degree of some reduced, effective, and base point free divisor $\frak {m}$ on a curve $C$, we show that multiplication by $n$ on the generalized Jacobian $J_\frak {m}$ factors through an isogeny $\varphi :A_\frak {m} \to J_\frak {m}$ whose kernel is dual to the Galois module of divisor classes $D$ such that $nD$ is linearly equivalent to some multiple of $\frak {m}$. By geometric class field theory, this corresponds to an abelian covering of $C_{\overline {k}} := C \times _{\mathrm {Spec}{k}} \mathrm {Spec}(\overline {k})$ of exponent $n$ unramified outside $\frak {m}$. We show that the $n$-coverings of $C$ parameterized by explicit descents are the maximal unramified subcoverings of the $k$-forms of this ramified covering. We present applications to the computation of Mordell–Weil ranks of nonhyperelliptic curves.References
- Michael F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4) 4 (1971), 47–62. MR 286136
- K. Belabas and C. Delaunay, Manjul Bhargava, anneaux de petit rang et courbes elliptiques, Gaz. Math. 143 (2015), 6–15 (French, with French summary). MR 3338935
- Manjul Bhargava and Benedict H. Gross, The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, Automorphic representations and $L$-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 23–91. MR 3156850
- Manjul Bhargava, Benedict H. Gross, and Xiaoheng Wang, A positive proportion of locally soluble hyperelliptic curves over $\Bbb Q$ have no point over any odd degree extension, J. Amer. Math. Soc. 30 (2017), no. 2, 451–493. With an appendix by Tim Dokchitser and Vladimir Dokchitser. MR 3600041, DOI 10.1090/jams/863
- Manjul Bhargava, Benedict H. Gross, and Xiaoheng Wang, Arithmetic invariant theory II: Pure inner forms and obstructions to the existence of orbits, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 139–171. MR 3495795, DOI 10.1007/978-3-319-23443-4_{5}
- B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7–25. MR 146143, DOI 10.1515/crll.1963.212.7
- Mikhail Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. Reine Angew. Math. 473 (1996), 181–194. MR 1390687, DOI 10.1515/crll.1995.473.181
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Andrew Bremner, Some quartic curves with no points in any cubic field, Proc. London Math. Soc. (3) 52 (1986), no. 2, 193–214. MR 818925, DOI 10.1112/plms/s3-52.2.193
- Nils Bruin, Bjorn Poonen, and Michael Stoll, Generalized explicit descent and its application to curves of genus 3, Forum Math. Sigma 4 (2016), Paper No. e6, 80. MR 3482281, DOI 10.1017/fms.2016.1
- Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), no. 268, 2347–2370. MR 2521292, DOI 10.1090/S0025-5718-09-02255-8
- J. W. S. Cassels, Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112. MR 163915, DOI 10.1515/crll.1962.211.95
- Pete L. Clark and Shahed Sharif, Period, index and potential. III, Algebra Number Theory 4 (2010), no. 2, 151–174. MR 2592017, DOI 10.2140/ant.2010.4.151
- J. E. Cremona, Classical invariants and 2-descent on elliptic curves, J. Symbolic Comput. 31 (2001), no. 1-2, 71–87. Computational algebra and number theory (Milwaukee, WI, 1996). MR 1806207, DOI 10.1006/jsco.1998.1004
- J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll, Explicit $n$-descent on elliptic curves. I. Algebra, J. Reine Angew. Math. 615 (2008), 121–155. MR 2384334, DOI 10.1515/CRELLE.2008.012
- Brendan Creutz, Explicit Second p-descent on Elliptic Curves (2010). Ph.D. thesis, Jacobs University.
- Brendan Creutz, Explicit descent in the Picard group of a cyclic cover of the projective line, ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 1, Math. Sci. Publ., Berkeley, CA, 2013, pp. 295–315. MR 3207419, DOI 10.2140/obs.2013.1.295
- Brendan Creutz, Second $p$-descents on elliptic curves, Math. Comp. 83 (2014), no. 285, 365–409. MR 3120595, DOI 10.1090/S0025-5718-2013-02713-5
- Brendan Creutz, Most binary forms come from a pencil of quadrics, Proc. Amer. Math. Soc. Ser. B 3 (2016), 18–27. MR 3579585, DOI 10.1090/bproc/24
- Brendan Creutz, Improved rank bounds from 2-descent on hyperelliptic Jacobians, Int. J. Number Theory 14 (2018), no. 6, 1709–1713. MR 3827956, DOI 10.1142/S179304211850104X
- Brendan Creutz and Bianca Viray, Two torsion in the Brauer group of a hyperelliptic curve, Manuscripta Math. 147 (2015), no. 1-2, 139–167. MR 3336942, DOI 10.1007/s00229-014-0721-7
- Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. III. Préschemas quotients, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 212, 99–118 (French). MR 1611786
- Everett W. Howe, The Weil pairing and the Hilbert symbol, Math. Ann. 305 (1996), no. 2, 387–392. MR 1391223, DOI 10.1007/BF01444229
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 242831, DOI 10.1007/BF01389795
- J. R. Merriman, S. Siksek, and N. P. Smart, Explicit $4$-descents on an elliptic curve, Acta Arith. 77 (1996), no. 4, 385–404. MR 1414518, DOI 10.4064/aa-77-4-385-404
- J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 167–212. MR 861976
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Bjorn Poonen and Eric Rains, Self cup products and the theta characteristic torsor, Math. Res. Lett. 18 (2011), no. 6, 1305–1318. MR 2915483, DOI 10.4310/MRL.2011.v18.n6.a18
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149. MR 1740984, DOI 10.2307/121064
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564, DOI 10.1007/978-1-4612-1035-1
- Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760, DOI 10.1017/CBO9780511549588
- Andrew V. Sutherland, A database of nonhyperelliptic genus-3 curves over $\Bbb Q$, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 443–459. MR 3952027
- Jack A. Thorne, $E_6$ and the arithmetic of a family of non-hyperelliptic curves of genus 3, Forum Math. Pi 3 (2015), e1, 41. MR 3298319, DOI 10.1017/fmp.2014.2
- Xiaoheng Wang, Maximal linear spaces contained in the based loci of pencils of quadrics, Algebr. Geom. 5 (2018), no. 3, 359–397. MR 3800357, DOI 10.14231/AG-2018-011
Bibliographic Information
- Brendan Creutz
- Affiliation: School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- MR Author ID: 949383
- Email: brendan.creutz@canterbury.ac.nz
- Received by editor(s): November 6, 2018
- Received by editor(s) in revised form: August 13, 2019, and September 1, 2019
- Published electronically: November 15, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1365-1394
- MSC (2010): Primary 11G10, 11G30, 14605
- DOI: https://doi.org/10.1090/mcom/3491
- MathSciNet review: 4063321