## Computational high frequency scattering from high-contrast heterogeneous media

HTML articles powered by AMS MathViewer

- by
Daniel Peterseim and Barbara Verfürth
**HTML**| PDF - Math. Comp.
**89**(2020), 2649-2674 Request permission

## Abstract:

This article considers the computational (acoustic) wave propagation in strongly heterogeneous structures beyond the assumption of periodicity. A high contrast between the constituents of microstructured multiphase materials can lead to unusual wave scattering and absorption, which are interesting and relevant from a physical viewpoint, for instance, in the case of crystals with defects. We present a computational multiscale method in the spirit of the Localized Orthogonal Decomposition and provide its rigorous a priori error analysis for two-phase diffusion coefficients that vary between $1$ and very small values. Special attention is paid to the extreme regimes of high frequency, high contrast, and their previously unexplored coexistence. A series of numerical experiments confirms the theoretical results and demonstrates the ability of the multiscale approach to efficiently capture relevant physical phenomena.## References

- Grégoire Allaire,
*Homogenization and two-scale convergence*, SIAM J. Math. Anal.**23**(1992), no. 6, 1482–1518. MR**1185639**, DOI 10.1137/0523084 - G. Allaire, M. Briane, and M. Vanninathan,
*A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures*, SeMA J.**73**(2016), no. 3, 237–259. MR**3542829**, DOI 10.1007/s40324-016-0067-z - Grégoire Allaire and Carlos Conca,
*Bloch wave homogenization and spectral asymptotic analysis*, J. Math. Pures Appl. (9)**77**(1998), no. 2, 153–208 (English, with English and French summaries). MR**1614641**, DOI 10.1016/S0021-7824(98)80068-8 - Habib Ammari and Fadil Santosa,
*Guided waves in a photonic bandgap structure with a line defect*, SIAM J. Appl. Math.**64**(2004), no. 6, 2018–2033. MR**2110347**, DOI 10.1137/S0036139902404025 - Ivo M. Babuška and Stefan A. Sauter,
*Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?*, SIAM J. Numer. Anal.**34**(1997), no. 6, 2392–2423. MR**1480387**, DOI 10.1137/S0036142994269186 - T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner,
*Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation*, Numer. Methods Partial Differential Equations**27**(2011), no. 1, 31–69. MR**2743599**, DOI 10.1002/num.20643 - Guy Bouchitté and Didier Felbacq,
*Homogenization near resonances and artificial magnetism from dielectrics*, C. R. Math. Acad. Sci. Paris**339**(2004), no. 5, 377–382 (English, with English and French summaries). MR**2092467**, DOI 10.1016/j.crma.2004.06.018 - Guy Bouchitté and Ben Schweizer,
*Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings*, Netw. Heterog. Media**8**(2013), no. 4, 857–878. MR**3180689**, DOI 10.3934/nhm.2013.8.857 - Susanne C. Brenner and L. Ridgway Scott,
*The mathematical theory of finite element methods*, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR**2373954**, DOI 10.1007/978-0-387-75934-0 - Donald L. Brown, Dietmar Gallistl, and Daniel Peterseim,
*Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations*, Meshfree methods for partial differential equations VIII, Lect. Notes Comput. Sci. Eng., vol. 115, Springer, Cham, 2017, pp. 85–115. MR**3718330**, DOI 10.1007/978-3-319-51954-8_{6} - Donald L. Brown and Daniel Peterseim,
*A multiscale method for porous microstructures*, Multiscale Model. Simul.**14**(2016), no. 3, 1123–1152. MR**3544847**, DOI 10.1137/140995210 - Huangxin Chen, Peipei Lu, and Xuejun Xu,
*A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number*, SIAM J. Numer. Anal.**51**(2013), no. 4, 2166–2188. MR**3082496**, DOI 10.1137/120883451 - C.-C. Chu, I. G. Graham, and T.-Y. Hou,
*A new multiscale finite element method for high-contrast elliptic interface problems*, Math. Comp.**79**(2010), no. 272, 1915–1955. MR**2684351**, DOI 10.1090/S0025-5718-2010-02372-5 - Patrick Ciarlet Jr. and Christian Stohrer,
*Finite-element heterogeneous multiscale method for the Helmholtz equation*, C. R. Math. Acad. Sci. Paris**352**(2014), no. 9, 755–760 (English, with English and French summaries). MR**3258269**, DOI 10.1016/j.crma.2014.07.006 - Carlos Conca and Muthusamy Vanninathan,
*Homogenization of periodic structures via Bloch decomposition*, SIAM J. Appl. Math.**57**(1997), no. 6, 1639–1659. MR**1484944**, DOI 10.1137/S0036139995294743 - Tomáš Dohnal and Ben Schweizer,
*A Bloch wave numerical scheme for scattering problems in periodic wave-guides*, SIAM J. Numer. Anal.**56**(2018), no. 3, 1848–1870. MR**3819159**, DOI 10.1137/17M1141643 - Maksymilian Dryja, Marcus V. Sarkis, and Olof B. Widlund,
*Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions*, Numer. Math.**72**(1996), no. 3, 313–348. MR**1367653**, DOI 10.1007/s002110050172 - Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou,
*Generalized multiscale finite element methods (GMsFEM)*, J. Comput. Phys.**251**(2013), 116–135. MR**3094911**, DOI 10.1016/j.jcp.2013.04.045 - A.L. Efros and A.L. Pokrovsky,
*Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability*, Solid State Communications**129**(2004), no. 10, 643–647., DOI 10.1016/j.ssc.2003.12.022 - Christian Engwer, Patrick Henning, Axel Målqvist, and Daniel Peterseim,
*Efficient implementation of the localized orthogonal decomposition method*, Comput. Methods Appl. Mech. Engrg.**350**(2019), 123–153. MR**3926249**, DOI 10.1016/j.cma.2019.02.040 - S. Esterhazy and J. M. Melenk,
*On stability of discretizations of the Helmholtz equation*, Numerical analysis of multiscale problems, Lect. Notes Comput. Sci. Eng., vol. 83, Springer, Heidelberg, 2012, pp. 285–324. MR**3050917**, DOI 10.1007/978-3-642-22061-6_{9} - D. Gallistl, T. Chaumont-Frelet, S. Nicaise, and J. Tomezyk,
*Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers*, HAL preprint, 2018. - D. Gallistl and D. Peterseim,
*Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering*, Comput. Methods Appl. Mech. Engrg.**295**(2015), 1–17. MR**3388822**, DOI 10.1016/j.cma.2015.06.017 - Claude J. Gittelson, Ralf Hiptmair, and Ilaria Perugia,
*Plane wave discontinuous Galerkin methods: analysis of the $h$-version*, M2AN Math. Model. Numer. Anal.**43**(2009), no. 2, 297–331. MR**2512498**, DOI 10.1051/m2an/2009002 - I. G. Graham, O. R. Pembery, and E. A. Spence,
*The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances*, J. Differential Equations**266**(2019), no. 6, 2869–2923. MR**3912672**, DOI 10.1016/j.jde.2018.08.048 - I. G. Graham and S. A. Sauter,
*Stability and finite element error analysis for the Helmholtz equation with variable coefficients*, Math. Comp.**89**(2020), no. 321, 105–138. MR**4011537**, DOI 10.1090/mcom/3457 - Roland Griesmaier and Peter Monk,
*Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation*, J. Sci. Comput.**49**(2011), no. 3, 291–310. MR**2853152**, DOI 10.1007/s10915-011-9460-z - F. Hellman, T. Kell, and A. Målqvist,
*Numerical upscaling of perturbed diffusion problems*, arXiv:1908.00652 (2019). - Fredrik Hellman and Axel Målqvist,
*Contrast independent localization of multiscale problems*, Multiscale Model. Simul.**15**(2017), no. 4, 1325–1355. MR**3707891**, DOI 10.1137/16M1100460 - Fredrik Hellman and Axel Målqvist,
*Numerical homogenization of elliptic PDEs with similar coefficients*, Multiscale Model. Simul.**17**(2019), no. 2, 650–674. MR**3945233**, DOI 10.1137/18M1189701 - Patrick Henning and Axel Målqvist,
*Localized orthogonal decomposition techniques for boundary value problems*, SIAM J. Sci. Comput.**36**(2014), no. 4, A1609–A1634. MR**3240855**, DOI 10.1137/130933198 - Patrick Henning and Daniel Peterseim,
*Oversampling for the multiscale finite element method*, Multiscale Model. Simul.**11**(2013), no. 4, 1149–1175. MR**3123820**, DOI 10.1137/120900332 - R. Hiptmair, A. Moiola, and I. Perugia,
*Plane wave discontinuous Galerkin methods: exponential convergence of the $hp$-version*, Found. Comput. Math.**16**(2016), no. 3, 637–675. MR**3494507**, DOI 10.1007/s10208-015-9260-1 - J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade,
*Photonic crystals: Molding the flow of light*, 2nd ed., Princeton University Press, Princeton, 2008. - D. Lafontaine, E. A. Spence, and J. Wunsch,
*For most frequencies, strong trapping has a weak effect in frequency-domain scattering*, arXiv:1903.12172 (2019). - Dag Lukkassen, Gabriel Nguetseng, and Peter Wall,
*Two-scale convergence*, Int. J. Pure Appl. Math.**2**(2002), no. 1, 35–86. MR**1912819** - Chiyan Luo, Steven G. Johnson, J.D. Joannopolous, and J.B. Pendry,
*All-angle negative refraction without negative effective index*, Phys. Rev. B**65**(2002), no. 2001104. - Axel Målqvist and Daniel Peterseim,
*Localization of elliptic multiscale problems*, Math. Comp.**83**(2014), no. 290, 2583–2603. MR**3246801**, DOI 10.1090/S0025-5718-2014-02868-8 - Jens Markus Melenk,
*On generalized finite-element methods*, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–University of Maryland, College Park. MR**2692949** - J. M. Melenk, A. Parsania, and S. Sauter,
*General DG-methods for highly indefinite Helmholtz problems*, J. Sci. Comput.**57**(2013), no. 3, 536–581. MR**3123557**, DOI 10.1007/s10915-013-9726-8 - J. M. Melenk and S. Sauter,
*Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions*, Math. Comp.**79**(2010), no. 272, 1871–1914. MR**2684350**, DOI 10.1090/S0025-5718-10-02362-8 - J. M. Melenk and S. Sauter,
*Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation*, SIAM J. Numer. Anal.**49**(2011), no. 3, 1210–1243. MR**2812565**, DOI 10.1137/090776202 - Andrea Moiola and Euan A. Spence,
*Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions*, Math. Models Methods Appl. Sci.**29**(2019), no. 2, 317–354. MR**3917405**, DOI 10.1142/S0218202519500106 - Mario Ohlberger and Barbara Verfürth,
*A new heterogeneous multiscale method for the Helmholtz equation with high contrast*, Multiscale Model. Simul.**16**(2018), no. 1, 385–411. MR**3769687**, DOI 10.1137/16M1108820 - Houman Owhadi and Lei Zhang,
*Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast*, Multiscale Model. Simul.**9**(2011), no. 4, 1373–1398. MR**2861243**, DOI 10.1137/100813968 - Clemens Pechstein and Robert Scheichl,
*Weighted Poincaré inequalities and applications in domain decomposition*, Domain decomposition methods in science and engineering XIX, Lect. Notes Comput. Sci. Eng., vol. 78, Springer, Heidelberg, 2011, pp. 197–204. MR**2867660**, DOI 10.1007/978-3-642-11304-8_{2}1 - J. B. Pendry, D. Schurig, and D. R. Smith,
*Controlling electromagnetic fields*, Science**312**(2006), no. 5781, 1780–1782. MR**2237570**, DOI 10.1126/science.1125907 - Ilaria Perugia, Paola Pietra, and Alessandro Russo,
*A plane wave virtual element method for the Helmholtz problem*, ESAIM Math. Model. Numer. Anal.**50**(2016), no. 3, 783–808. MR**3507273**, DOI 10.1051/m2an/2015066 - Daniel Peterseim,
*Eliminating the pollution effect in Helmholtz problems by local subscale correction*, Math. Comp.**86**(2017), no. 305, 1005–1036. MR**3614010**, DOI 10.1090/mcom/3156 - Daniel Peterseim,
*Variational multiscale stabilization and the exponential decay of fine-scale correctors*, Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, Springer, [Cham], 2016, pp. 341–367. MR**3616023** - Daniel Peterseim and Robert Scheichl,
*Robust numerical upscaling of elliptic multiscale problems at high contrast*, Comput. Methods Appl. Math.**16**(2016), no. 4, 579–603. MR**3552482**, DOI 10.1515/cmam-2016-0022 - A.L. Pokrovsky and A.L. Efros,
*Diffraction theory and focusing of light by a slab of left-handed material*, Proceedings of the Sixth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Physica B: Condensed Matter**338**(2003), no. 1-4, 333–337. - Stefan Sauter and Céline Torres,
*Stability estimate for the Helmholtz equation with rapidly jumping coefficients*, Z. Angew. Math. Phys.**69**(2018), no. 6, Paper No. 139, 30. MR**3864702**, DOI 10.1007/s00033-018-1031-9

## Additional Information

**Daniel Peterseim**- Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstr. 14, D-86159 Augsburg, Germany
- MR Author ID: 848711
- Email: daniel.peterseim@math.uni-augsburg.de
**Barbara Verfürth**- Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstr. 14, D-86159 Augsburg, Germany
- Email: barbara.verfuerth@math.uni-augsburg.de
- Received by editor(s): February 27, 2019
- Received by editor(s) in revised form: October 16, 2019, and January 26, 2020
- Published electronically: March 9, 2020
- Additional Notes: The authors would also like to acknowledge the kind hospitality of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI), where part of this research was developed under the frame of the thematic programme Numerical Analysis of Complex PDE Models in the Sciences.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp.
**89**(2020), 2649-2674 - MSC (2010): Primary 35J05, 65N12, 65N15, 65N30
- DOI: https://doi.org/10.1090/mcom/3529
- MathSciNet review: 4136542