A note on devising HDG+ projections on polyhedral elements
HTML articles powered by AMS MathViewer
- by Shukai Du and Francisco-Javier Sayas HTML | PDF
- Math. Comp. 90 (2021), 65-79 Request permission
Abstract:
In this paper, we propose a simple way of constructing HDG+ projections on polyhedral elements. The projections enable us to analyze the Lehrenfeld–Schöberl HDG (HDG+) methods in a very concise manner, and make many existing analysis techniques of standard HDG methods reusable for HDG+. The novelty here is an alternative way of constructing the projections without using $M$-decompositions as a middle step. This extends our previous results [S. Du and F.-J. Sayas, SpringerBriefs in Mathematics (2019)] (elliptic problems) and [S. Du and F.-J. Sayas, Math. Comp. 89 (2020), pp. 1745–1782] (elasticity) to polyhedral meshes.References
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, DOI 10.1007/BF01389710
- Brandon Chabaud and Bernardo Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation, Math. Comp. 81 (2012), no. 277, 107–129. MR 2833489, DOI 10.1090/S0025-5718-2011-02525-1
- Bernardo Cockburn, Daniele A. Di Pietro, and Alexandre Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 635–650. MR 3507267, DOI 10.1051/m2an/2015051
- Bernardo Cockburn, Guosheng Fu, and Francisco Javier Sayas, Superconvergence by $M$-decompositions. Part I: General theory for HDG methods for diffusion, Math. Comp. 86 (2017), no. 306, 1609–1641. MR 3626530, DOI 10.1090/mcom/3140
- Bernardo Cockburn, Zhixing Fu, Allan Hungria, Liangyue Ji, Manuel A. Sánchez, and Francisco-Javier Sayas, Stormer-Numerov HDG methods for acoustic waves, J. Sci. Comput. 75 (2018), no. 2, 597–624. MR 3780780, DOI 10.1007/s10915-017-0547-z
- Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow, Math. Comp. 80 (2011), no. 274, 723–760. MR 2772094, DOI 10.1090/S0025-5718-2010-02410-X
- Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas, A projection-based error analysis of HDG methods, Math. Comp. 79 (2010), no. 271, 1351–1367. MR 2629996, DOI 10.1090/S0025-5718-10-02334-3
- Bernardo Cockburn and Kassem Mustapha, A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math. 130 (2015), no. 2, 293–314. MR 3343926, DOI 10.1007/s00211-014-0661-x
- Bernardo Cockburn and Vincent Quenneville-Bélair, Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation, Math. Comp. 83 (2014), no. 285, 65–85. MR 3120582, DOI 10.1090/S0025-5718-2013-02743-3
- Daniele A. Di Pietro and Jérôme Droniou, A hybrid high-order method for Leray-Lions elliptic equations on general meshes, Math. Comp. 86 (2017), no. 307, 2159–2191. MR 3647954, DOI 10.1090/mcom/3180
- D. A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications, Modeling, Simulation and Applications, Springer, Cham, 2020.
- Shukai Du and Francisco-Javier Sayas, An invitation to the theory of the hybridizable discontinuous Galerkin method, SpringerBriefs in Mathematics, Springer, Cham, 2019. Projections, estimates, tools. MR 3970243, DOI 10.1007/978-3-030-27230-2
- Shukai Du and Francisco-Javier Sayas, New analytical tools for HDG in elasticity, with applications to elastodynamics, Math. Comp. 89 (2020), no. 324, 1745–1782. MR 4081917, DOI 10.1090/mcom/3499
- Alexandre Ern and Jean-Luc Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. MR 3702417, DOI 10.1051/m2an/2016066
- Roland Griesmaier and Peter Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comput. 49 (2011), no. 3, 291–310. MR 2853152, DOI 10.1007/s10915-011-9460-z
- Allan Hungria, Daniele Prada, and Francisco-Javier Sayas, HDG methods for elastodynamics, Comput. Math. Appl. 74 (2017), no. 11, 2671–2690. MR 3725823, DOI 10.1016/j.camwa.2017.08.016
- Christoph Lehrenfeld, Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems, Rheinisch-Westfalischen Technischen Hochschule Aachen (2010).
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- J.-C. Nédélec, A new family of mixed finite elements in $\textbf {R}^3$, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, DOI 10.1007/BF01389668
- Issei Oikawa, Hybridized discontinuous Galerkin method for convection-diffusion problems, Jpn. J. Ind. Appl. Math. 31 (2014), no. 2, 335–354. MR 3218911, DOI 10.1007/s13160-014-0137-5
- Weifeng Qiu, Jiguang Shen, and Ke Shi, An HDG method for linear elasticity with strong symmetric stresses, Math. Comp. 87 (2018), no. 309, 69–93. MR 3716189, DOI 10.1090/mcom/3249
- Weifeng Qiu and Ke Shi, An HDG method for convection diffusion equation, J. Sci. Comput. 66 (2016), no. 1, 346–357. MR 3440284, DOI 10.1007/s10915-015-0024-5
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
Additional Information
- Shukai Du
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 1303285
- Email: shukaidu@udel.edu
- Francisco-Javier Sayas
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 621885
- Received by editor(s): October 7, 2019
- Received by editor(s) in revised form: May 29, 2020
- Published electronically: September 23, 2020
- Additional Notes: This work was partially supported by the NSF grant DMS-1818867.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 65-79
- MSC (2010): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/mcom/3573
- MathSciNet review: 4166453