Uniform convergent expansions of integral transforms
HTML articles powered by AMS MathViewer
- by José L. López, Pablo Palacios and Pedro J. Pagola;
- Math. Comp. 90 (2021), 1357-1380
- DOI: https://doi.org/10.1090/mcom/3601
- Published electronically: January 26, 2021
- HTML | PDF | Request permission
Abstract:
Several convergent expansions are available for most of the special functions of the mathematical physics, as well as some asymptotic expansions [NIST Handbook of Mathematical Functions, 2010]. Usually, both type of expansions are given in terms of elementary functions; the convergent expansions provide a good approximation for small values of a certain variable, whereas the asymptotic expansions provide a good approximation for large values of that variable. Also, quite often, those expansions are not uniform: the convergent expansions fail for large values of the variable and the asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-2019] we have designed new expansions of certain special functions, given in terms of elementary functions, that are uniform in certain variables, providing good approximations of those special functions in large regions of the variables, in particular for large and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is based on a suitable integral representation of the special function. In this paper we face the problem of designing a general theory of uniform approximations of special functions based on their integral representations. Then, we consider the following integral transform of a function $g(t)$ with kernel $h(t,z)$, $F(z)\coloneq \int _0^1h(t,z)g(t)dt$. We require for the function $h(t,z)$ to be uniformly bounded for $z\in \mathcal {D}\subset \mathbb {C}$ by a function $H(t)$ integrable in $t\in [0,1]$, and for the function $g(t)$ to be analytic in an open region $\Omega$ that contains the open interval $(0,1)$. Then, we derive expansions of $F(z)$ in terms of the moments of the function $h$, $M[h(\cdot ,z),n]\coloneq \int _0^1h(t,z)t^ndt$, that are uniformly convergent for $z\in \mathcal {D}$. The convergence of the expansion is of exponential order $\mathcal {O}(a^{-n})$, $a>1$, when $[0,1]\in \Omega$ and of power order $\mathcal {O}(n^{-b})$, $b>0$, when $[0,1]\notin \Omega$. Most of the special functions $F(z)$ having an integral representation may be cast in this form, possibly after an appropriate change of the integration variable. Then, special interest has the case when the moments $M[h(\cdot ,z),n]$ are elementary functions of $z$, because in that case the uniformly convergent expansion derived for $F(z)$ is given in terms of elementary functions. We illustrate the theory with several examples of special functions different from those considered in [Bujanda & all, 2018-2019].References
- M. A. Boutiche, M. Rahmani, and H. M. Srivastava, Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math. 14 (2017), no. 2, Paper No. 89, 10. MR 3621790, DOI 10.1007/s00009-017-0891-0
- F. F. Di Bruno, Théorie des Formes Binaires, Librerie Breno, Torino, 1876.
- Yu. A. Brychkov, On some properties of the generalized Bernoulli and Euler polynomials, Integral Transforms Spec. Funct. 23 (2012), no. 10, 723–735. MR 2980873, DOI 10.1080/10652469.2011.627995
- Neven Elezović, Generalized Bernoulli polynomials and numbers, revisited, Mediterr. J. Math. 13 (2016), no. 1, 141–151. MR 3456913, DOI 10.1007/s00009-014-0498-7
- Blanca Bujanda, José L. López, and Pedro J. Pagola, Convergent expansions of the incomplete gamma functions in terms of elementary functions, Anal. Appl. (Singap.) 16 (2018), no. 3, 435–448. MR 3810632, DOI 10.1142/S0219530517500099
- Blanca Bujanda, José L. López, and Pedro J. Pagola, Convergent expansions of the confluent hypergeometric functions in terms of elementary functions, Math. Comp. 88 (2019), no. 318, 1773–1789. MR 3925484, DOI 10.1090/mcom/3389
- K. Dilcher, Bernoulli and Euler polynomials, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 587–599. MR 2655364
- Philippe Flajolet and Andrew Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990), no. 2, 216–240. MR 1039294, DOI 10.1137/0403019
- Philippe Flajolet, Eric Fusy, Xavier Gourdon, Daniel Panario, and Nicolas Pouyanne, A hybrid of Darboux’s method and singularity analysis in combinatorial asymptotics, Electron. J. Combin. 13 (2006), no. 1, Research Paper 103, 35. MR 2274318, DOI 10.37236/1129
- Guo-Dong Liu and H. M. Srivastava, Explicit formulas for the Nörlund polynomials $B^{(x)}_n$ and $b^{(x)}_n$, Comput. Math. Appl. 51 (2006), no. 9-10, 1377–1384. MR 2237635, DOI 10.1016/j.camwa.2006.02.003
- José L. López and Nico M. Temme, Two-point Taylor expansions of analytic functions, Stud. Appl. Math. 109 (2002), no. 4, 297–311. MR 1934653, DOI 10.1111/1467-9590.00225
- José L. López and Nico M. Temme, Multi-point Taylor expansions of analytic functions, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4323–4342. MR 2067121, DOI 10.1090/S0002-9947-04-03619-0
- José L. López and Nico M. Temme, New series expansions of the Gauss hypergeometric function, Adv. Comput. Math. 39 (2013), no. 2, 349–365. MR 3082518, DOI 10.1007/s10444-012-9283-y
- José L. López, Ester Pérez Sinusía, and Nico M. Temme, Multi-point Taylor approximations in one-dimensional linear boundary value problems, Appl. Math. Comput. 207 (2009), no. 2, 519–527. MR 2489122, DOI 10.1016/j.amc.2008.11.015
- José L. López, Convergent expansions of the Bessel functions in terms of elementary functions, Adv. Comput. Math. 44 (2018), no. 1, 277–294. MR 3755750, DOI 10.1007/s10444-017-9543-y
- A. B. Olde Daalhuis, Confluent hypergeometric functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 321–349. MR 2655353
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- F. W. J. Olver and L. C. Maximon, Bessel Functions, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, pp. 215–286 (Chapter 10).
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 231725
- R. Roy and F. W. J. Olver, Elementary Functions, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, pp. 104–134 (Chapter 4).
- Zhizheng Zhang and Hanqing Yang, Some closed formulas for generalized Bernoulli-Euler numbers and polynomials, Proc. Jangjeon Math. Soc. 11 (2008), no. 2, 191–198. MR 2482602
Bibliographic Information
- José L. López
- Affiliation: Departmento de Estadística, Informática y Matemáticas and INAMAT^{2}, Universidad Pública de Navarra, Navarra, Spain
- ORCID: 0000-0002-6050-9015
- Email: jl.lopez@unavarra.es
- Pablo Palacios
- Affiliation: Departmento de Estadística, Informática y Matemáticas and INAMAT^{2}, Universidad Pública de Navarra, Navarra, Spain
- ORCID: 0000-0002-3123-2889
- Email: pablo.palacios@unavarra.es
- Pedro J. Pagola
- Affiliation: Departmento de Estadística, Informática y Matemáticas and INAMAT^{2}, Universidad Pública de Navarra, Navarra, Spain
- MR Author ID: 806866
- Email: pedro.pagola@unavarra.es
- Received by editor(s): October 29, 2019
- Received by editor(s) in revised form: June 3, 2020, and September 2, 2020
- Published electronically: January 26, 2021
- Additional Notes: This research was supported by the Spanish Ministry of Economía y Competitividad, project MTM2017-83490-P. The Universidad Pública de Navarra is acknowledged for its financial support.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 1357-1380
- MSC (2020): Primary 41A58, 41A80, 44A05, 33F05
- DOI: https://doi.org/10.1090/mcom/3601
- MathSciNet review: 4232227