On an inverse problem of nonlinear imaging with fractional damping
HTML articles powered by AMS MathViewer
- by Barbara Kaltenbacher and William Rundell HTML | PDF
- Math. Comp. 91 (2022), 245-276 Request permission
Abstract:
This paper considers the attenuated Westervelt equation in pressure formulation. The attenuation is by various models proposed in the literature and characterised by the inclusion of non-local operators that give power law damping as opposed to the exponential of classical models. The goal is the inverse problem of recovering a spatially dependent coefficient in the equation, the parameter of nonlinearity $\kappa (x)$, in what becomes a nonlinear hyperbolic equation with non-local terms. The overposed measured data is a time trace taken on a subset of the domain or its boundary. We shall show injectivity of the linearised map from $\kappa$ to the overposed data and from this basis develop and analyse Newton-type schemes for its effective recovery.References
- A. A. Alikhanov, A priori estimates for solutions of boundary value problems for equations of fractional order, Differ. Uravn. 46 (2010), no. 5, 658–664 (Russian, with Russian summary); English transl., Differ. Equ. 46 (2010), no. 5, 660–666. MR 2797545, DOI 10.1134/S0012266110050058
- L. Bjørnø, Characterization of biological media by means of their non-linearity, Ultrasonics 24 (1986), no. 5, 254–259., DOI 10.1016/0041-624X(86)90102-2
- V. Burov, I. Gurinovich, O. Rudenko, and E. Tagunov, Reconstruction of the spatial distribution of the nonlinearity parameter and sound velocity in acoustic nonlinear tomography, Acoust. Phys. 40 (1994), 816–823.
- Wei Cai, Wen Chen, Jun Fang, and Sverre Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation, Appl. Mech. Rev. 70 (2018), no. 3.
- Charles A. Cain, Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. a theoretical basis, J. Acoust. Soc. Amer. 80 (1986), no. 1, 28–32., DOI 10.1121/1.394186
- Michele Caputo, Linear models of dissipation whose $Q$ is almost frequency independent – II, Geophys. J. Int. 13 (1967), no. 5, 529–539., DOI 10.1111/j.1365-246X.1967.tb02303.x
- W. Chen and S. Holm, Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Amer. 115 (2004), no. 4, 1424–1430., DOI 10.1121/1.1646399
- M. M. Džrbašjan, Integral′nye preobrazovaniya i predstavleniya funktsiĭv kompleksnoĭ oblasti, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0209472
- Mkhitar M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Operator Theory: Advances and Applications, vol. 65, Birkhäuser Verlag, Basel, 1993. Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]. MR 1249271, DOI 10.1007/978-3-0348-8549-2
- Alan Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math. Comp. 64 (1995), no. 210, 763–776. MR 1262279, DOI 10.1090/S0025-5718-1995-1262279-2
- Paul P. B. Eggermont, On Galerkin methods for Abel-type integral equations, SIAM J. Numer. Anal. 25 (1988), no. 5, 1093–1117. MR 960868, DOI 10.1137/0725063
- D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev. 55 (2013), no. 4, 601–667. MR 3124880, DOI 10.1137/120880173
- Martin Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems 13 (1997), no. 1, 79–95. MR 1435869, DOI 10.1088/0266-5611/13/1/007
- Sverre Holm and Sven Peter Näsholm, A causal and fractional all-frequency wave equation for lossy media, J. Acoust. Soc. Amer. 130 (2011), no. 4, 2195–2202., DOI 10.1121/1.3631626
- Nobuyuki Ichida, Takuso Sato, and Melvin Linzer, Imaging the nonlinear ultrasonic parameter of a medium, Ultrasonic Imaging 5 (1983), no. 4, 295–299. PMID: 6686896., DOI 10.1177/016173468300500401
- Bangti Jin and William Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse Problems 31 (2015), no. 3, 035003, 40. MR 3311557, DOI 10.1088/0266-5611/31/3/035003
- Barbara Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Equ. Control Theory 4 (2015), no. 4, 447–491. MR 3461695, DOI 10.3934/eect.2015.4.447
- Barbara Kaltenbacher, Andreas Neubauer, and Otmar Scherzer, Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. MR 2459012, DOI 10.1515/9783110208276
- Barbara Kaltenbacher, Andrej Klassen, and Mario Luiz Previatti de Souza, The Ivanov regularized Gauss-Newton method in Banach space with an a posteriori choice of the regularization radius, J. Inverse Ill-Posed Probl. 27 (2019), no. 4, 539–557. MR 3987896, DOI 10.1515/jiip-2018-0093
- Barbara Kaltenbacher and Vanja Nikolić, Time-fractional Moore-Gibson-Thompson equations (2021). arXiv:2104.13967 [math.AP].
- Barbara Kaltenbacher and William Rundell, On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements, Inverse Probl. Imaging 15 (2021), 865-891., DOI 10.3934/ipi.2021020
- Barbara Kaltenbacher and William Rundell, Some inverse problems for wave equations with fractional derivative attenuation, Inverse Problems 37 (2021), no. 4, Paper No. 045002, 28. MR 4234446, DOI 10.1088/1361-6420/abe136
- Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010. An introduction to mathematical models. MR 2676137, DOI 10.1142/9781848163300
- Francesco Mainardi and Rudolf Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. 118 (2000), no. 1-2, 283–299. Higher transcendental functions and their applications. MR 1765955, DOI 10.1016/S0377-0427(00)00294-6
- Ljubica Oparnica and Endre Süli, Well-posedness of the fractional Zener wave equation for heterogeneous viscoelastic materials, Fract. Calc. Appl. Anal. 23 (2020), no. 1, 126–166. MR 4069924, DOI 10.1515/fca-2020-0005
- Andreas Rieder, On convergence rates of inexact Newton regularizations, Numer. Math. 88 (2001), no. 2, 347–365. MR 1826857, DOI 10.1007/PL00005448
- William Rundell and Zhidong Zhang, On the identification of source term in the heat equation from sparse data, SIAM J. Math. Anal. 52 (2020), no. 2, 1526–1548., DOI 10.1137/19M1279915
- Kenichi Sakamoto and Masahiro Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426–447. MR 2805524, DOI 10.1016/j.jmaa.2011.04.058
- Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
- Thomas L. Szabo, Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Amer. 96 (1994), no. 1, 491–500., DOI 10.1121/1.410434
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
- Bradley E. Treeby and B. T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian, J. Acoust. Soc. Amer. 127 (2010), no. 5, 2741–2748., DOI 10.1121/1.3377056
- François Varray, Olivier Basset, Piero Tortoli, and Christian Cachard, Extensions of nonlinear B/A parameter imaging methods for echo mode, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 (201106), 1232–1244., DOI 10.1109/TUFFC.2011.1933
- Urs Vögeli, Khadijeh Nedaiasl, and Stefan A. Sauter, A fully discrete Galerkin method for Abel-type integral equations, Adv. Comput. Math. 44 (2018), no. 5, 1601–1626. MR 3874031, DOI 10.1007/s10444-018-9598-4
- Margaret G. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation, J. Acoust. Soc. Amer. 120 (2006), no. 6, 3493–3502., DOI 10.1121/1.2354032
- Dong Zhang, Xi Chen, and Xiu-fen Gong, Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source–theoretical analysis and computer simulations, J. Acoust. Soc. Amer. 109 (2001), no. 3, 1219–1225., DOI 10.1121/1.1344160
- Dong Zhang, Xiufen Gong, and Shigong Ye, Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics, J. Acoust. Soc. Amer. 99 (1996), no. 4, 2397–2402., DOI 10.1121/1.415427
Additional Information
- Barbara Kaltenbacher
- Affiliation: Department of Mathematics, Alpen-Adria-Universität Klagenfurt, Universitatsstrasse 65-67, 9020 Klagenfurt Austria
- MR Author ID: 616341
- ORCID: 0000-0002-3295-6977
- Email: barbara.kaltenbacher@aau.at
- William Rundell
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 213241
- Email: rundell@math.tamu.edu
- Received by editor(s): February 12, 2021
- Received by editor(s) in revised form: May 19, 2021
- Published electronically: September 20, 2021
- Additional Notes: The work of the first author was supported by the Austrian Science Fund fwf under the grants P30054 and doc78. The work of the second author was supported in part by the National Science Foundation through awards dms-1620138 and dms-2111020
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 245-276
- MSC (2020): Primary 35R30, 35R11, 35L70, 78A46
- DOI: https://doi.org/10.1090/mcom/3683
- MathSciNet review: 4350539