Time discretizations of Wasserstein–Hamiltonian flows
HTML articles powered by AMS MathViewer
- by Jianbo Cui, Luca Dieci and Haomin Zhou;
- Math. Comp. 91 (2022), 1019-1075
- DOI: https://doi.org/10.1090/mcom/3726
- Published electronically: March 14, 2022
- HTML | PDF | Request permission
Abstract:
We study discretizations of Hamiltonian systems on the probability density manifold equipped with the $L^2$-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on a graph (lattice) with different weights are derived, which can be viewed as spatial discretizations of the original Hamiltonian systems. We prove consistency of these discretizations. Furthermore, by regularizing the system using the Fisher information, we deduce an explicit lower bound for the density function, which guarantees that symplectic schemes can be used to discretize in time. Moreover, we show desirable long time behavior of these symplectic schemes, and demonstrate their performance on several numerical examples. Finally, we compare the present approach with the standard viscosity methodology.References
- Luigi Ambrosio and Wilfred Gangbo, Hamiltonian ODEs in the Wasserstein space of probability measures, Comm. Pure Appl. Math. 61 (2008), no. 1, 18–53. MR 2361303, DOI 10.1002/cpa.20188
- Jean-David Benamou and Yann Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math. 84 (2000), no. 3, 375–393. MR 1738163, DOI 10.1007/s002110050002
- Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput. 37 (2015), no. 2, A1111–A1138. MR 3340204, DOI 10.1137/141000439
- Alain Bensoussan, Jens Frehse, and Phillip Yam, Mean field games and mean field type control theory, SpringerBriefs in Mathematics, Springer, New York, 2013. MR 3134900, DOI 10.1007/978-1-4614-8508-7
- Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam, The master equation in mean field theory, J. Math. Pures Appl. (9) 103 (2015), no. 6, 1441–1474. MR 3343705, DOI 10.1016/j.matpur.2014.11.005
- Mattia Bongini, Massimo Fornasier, Francesco Rossi, and Francesco Solombrino, Mean-field Pontryagin maximum principle, J. Optim. Theory Appl. 175 (2017), no. 1, 1–38. MR 3707918, DOI 10.1007/s10957-017-1149-5
- Benoît Bonnet and Hélène Frankowska, Necessary optimality conditions for optimal control problems in Wasserstein spaces, Appl. Math. Optim. 84 (2021), no. suppl. 2, S1281–S1330. MR 4356896, DOI 10.1007/s00245-021-09772-w
- Benoît Bonnet and Francesco Rossi, The Pontryagin maximum principle in the Wasserstein space, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 11, 36. MR 3881882, DOI 10.1007/s00526-018-1447-2
- P. Cardaliaguet. Notes on mean-field games, Available at https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf, 2012.
- Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions, The master equation and the convergence problem in mean field games, Annals of Mathematics Studies, vol. 201, Princeton University Press, Princeton, NJ, 2019. MR 3967062, DOI 10.2307/j.ctvckq7qf
- Giulia Cavagnari, Antonio Marigonda, and Benedetto Piccoli, Generalized dynamic programming principle and sparse mean-field control problems, J. Math. Anal. Appl. 481 (2020), no. 1, 123437, 45. MR 4008538, DOI 10.1016/j.jmaa.2019.123437
- Shui-Nee Chow, Wuchen Li, and Haomin Zhou, A discrete Schrödinger equation via optimal transport on graphs, J. Funct. Anal. 276 (2019), no. 8, 2440–2469. MR 3926122, DOI 10.1016/j.jfa.2019.02.005
- Shui-Nee Chow, Wuchen Li, and Haomin Zhou, Wasserstein Hamiltonian flows, J. Differential Equations 268 (2020), no. 3, 1205–1219. MR 4029003, DOI 10.1016/j.jde.2019.08.046
- Shui-Nee Chow, Wen Huang, Yao Li, and Haomin Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 969–1008. MR 2928139, DOI 10.1007/s00205-011-0471-6
- Marco Cirant and Levon Nurbekyan, The variational structure and time-periodic solutions for mean-field games systems, Minimax Theory Appl. 3 (2018), no. 2, 227–260. MR 3882531
- M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), no. 167, 1–19. MR 744921, DOI 10.1090/S0025-5718-1984-0744921-8
- J. Cui, L. Dieci, and H. Zhou, A continuation multiple shooting method for Wasserstein geodesic equation, arXiv:2105.09502, 2021.
- Jianbo Cui, Shu Liu, and Haomin Zhou, What is a stochastic Hamiltonian process on finite graph? An optimal transport answer, J. Differential Equations 305 (2021), 428–457. MR 4330908, DOI 10.1016/j.jde.2021.10.009
- Weinan E, Jiequn Han, and Qianxiao Li, A mean-field optimal control formulation of deep learning, Res. Math. Sci. 6 (2019), no. 1, Paper No. 10, 41. MR 3891852, DOI 10.1007/s40687-018-0172-y
- B. Roy Frieden, Physics from Fisher information, Cambridge University Press, Cambridge, 1998. A unification. MR 1676801, DOI 10.1017/CBO9780511622670
- Wilfrid Gangbo, Hwa Kil Kim, and Tommaso Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc. 211 (2011), no. 993, vi+77. MR 2808856, DOI 10.1090/S0065-9266-2010-00610-0
- Wilfrid Gangbo, Truyen Nguyen, and Adrian Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Methods Appl. Anal. 15 (2008), no. 2, 155–183. MR 2481677, DOI 10.4310/MAA.2008.v15.n2.a4
- Wilfrid Gangbo and Andrzej Święch, Existence of a solution to an equation arising from the theory of mean field games, J. Differential Equations 259 (2015), no. 11, 6573–6643. MR 3397332, DOI 10.1016/j.jde.2015.08.001
- I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. Revised English edition translated and edited by Richard A. Silverman. MR 160139
- J. L. Gross and J. Yellen, editors. Handbook of graph theory. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2004.
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- J.-F. Jabir, D. Šiška, and L. Szpruch, Mean-field neural odes via relaxed optimal control. arXiv:1912.05475, 2019.
- Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix, Optimal control of multiagent systems in the Wasserstein space, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 58, 45. MR 4073204, DOI 10.1007/s00526-020-1718-6
- Shi Jin, Peter Markowich, and Christof Sparber, Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20 (2011), 121–209. MR 2805153, DOI 10.1017/S0962492911000031
- John D. Lafferty, The density manifold and configuration space quantization, Trans. Amer. Math. Soc. 305 (1988), no. 2, 699–741. MR 924776, DOI 10.1090/S0002-9947-1988-0924776-9
- Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Jpn. J. Math. 2 (2007), no. 1, 229–260. MR 2295621, DOI 10.1007/s11537-007-0657-8
- Christian Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1533–1574. MR 3121631, DOI 10.3934/dcds.2014.34.1533
- Wuchen Li, Jianfeng Lu, and Li Wang, Fisher information regularization schemes for Wasserstein gradient flows, J. Comput. Phys. 416 (2020), 109449, 24. MR 4107049, DOI 10.1016/j.jcp.2020.109449
- Wuchen Li, Penghang Yin, and Stanley Osher, Computations of optimal transport distance with Fisher information regularization, J. Sci. Comput. 75 (2018), no. 3, 1581–1595. MR 3798113, DOI 10.1007/s10915-017-0599-0
- John Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), no. 2, 423–437. MR 2358290, DOI 10.1007/s00220-007-0367-3
- Jan Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (2011), no. 8, 2250–2292. MR 2824578, DOI 10.1016/j.jfa.2011.06.009
- E. Madelung, Quanten theorie in hydrodynamischer form, Z. Phys. 40 (1927), no. 3–4, 322–326.
- E. Nelson, Derivation of the Schrödinger equation from newtonian mechanics, Phys. Rev. 150 (1966), 1079–1085.
- Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174. MR 1842429, DOI 10.1081/PDE-100002243
- Michele Pavon, Quantum Schrödinger bridges, Directions in mathematical systems theory and optimization, Lect. Notes Control Inf. Sci., vol. 286, Springer, Berlin, 2003, pp. 227–238. MR 2014794, DOI 10.1007/3-540-36106-5_{1}7
- Gabriel Peyré, Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci. 8 (2015), no. 4, 2323–2351. MR 3413589, DOI 10.1137/15M1010087
- Nikolay Pogodaev and Maxim Staritsyn, Impulsive control of nonlocal transport equations, J. Differential Equations 269 (2020), no. 4, 3585–3623. MR 4097258, DOI 10.1016/j.jde.2020.03.007
- Filippo Santambrogio, Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, vol. 87, Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling. MR 3409718, DOI 10.1007/978-3-319-20828-2
- E. Schrödinger, Uber die Umkehrung der Naturgesetze, Sitzungsber. Preuss Akad. Wiss. Phys. Math. 144 (1931), 144–153.
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- Max-K. von Renesse, An optimal transport view of Schrödinger’s equation, Canad. Math. Bull. 55 (2012), no. 4, 858–869. MR 2994690, DOI 10.4153/CMB-2011-121-9
Bibliographic Information
- Jianbo Cui
- Affiliation: School of Mathematics, Georgia Tech, Atlanta, Georgia 30332
- Address at time of publication: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Email: jianbo.cui@polyu.edu.hk
- Luca Dieci
- Affiliation: School of Mathematics, Georgia Tech, Atlanta, Georgia 30332
- MR Author ID: 247339
- Email: dieci@math.gatech.edu
- Haomin Zhou
- Affiliation: School of Mathematics, Georgia Tech, Atlanta, Georgia 30332
- MR Author ID: 643741
- Email: hmzhou@math.gatech.edu
- Received by editor(s): June 11, 2020
- Received by editor(s) in revised form: September 9, 2021
- Published electronically: March 14, 2022
- Additional Notes: The research was partially supported by Georgia Tech Mathematics Application Portal (GT-MAP) and by research grants NSF DMS-1620345. DMS-1830225, and ONR N00014-18-1-2852. The research of the first author was partially supported by start-up funds (P0039016) from Hong Kong Polytechnic University and the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics.
The first author is the corresponding author. - © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1019-1075
- MSC (2020): Primary 65P10; Secondary 35R02, 58B20, 65M12
- DOI: https://doi.org/10.1090/mcom/3726
- MathSciNet review: 4405488