Computing equilibrium measures with power law kernels
HTML articles powered by AMS MathViewer
- by Timon S. Gutleb, José A. Carrillo and Sheehan Olver;
- Math. Comp. 91 (2022), 2247-2281
- DOI: https://doi.org/10.1090/mcom/3740
- Published electronically: June 14, 2022
- HTML | PDF | Request permission
Abstract:
We introduce a method to numerically compute equilibrium measures for problems with attractive-repulsive power law kernels of the form $K(x-y) = \frac {|x-y|^\alpha }{\alpha }-\frac {|x-y|^\beta }{\beta }$ using recursively generated banded and approximately banded operators acting on expansions in ultraspherical polynomial bases. The proposed method reduces what is naïvely a difficult to approach optimization problem over a measure space to a straightforward optimization problem over one or two variables fixing the support of the equilibrium measure. The structure and rapid convergence properties of the obtained operators result in high computational efficiency in the individual optimization steps. We discuss stability and convergence of the method under a Tikhonov regularization and use an implementation to showcase comparisons with analytically known solutions as well as discrete particle simulations. Finally, we numerically explore open questions with respect to existence and uniqueness of equilibrium measures as well as gap forming behaviour in parameter ranges of interest for power law kernels, where the support of the equilibrium measure splits into two intervals.References
- Mark J. Ablowitz and Athanassios S. Fokas, Complex variables: introduction and applications, 2nd ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003. MR 1989049, DOI 10.1017/CBO9780511791246
- D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal. 209 (2013), no. 3, 1055–1088. MR 3067832, DOI 10.1007/s00205-013-0644-6
- D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Phys. D 260 (2013), 5–25. MR 3143991, DOI 10.1016/j.physd.2012.10.002
- Richard Beals and Roderick Wong, Special functions and orthogonal polynomials, Cambridge Studies in Advanced Mathematics, vol. 153, Cambridge University Press, Cambridge, 2016. MR 3524801, DOI 10.1017/CBO9781316227381
- Andrea L. Bertozzi, Theodore Kolokolnikov, Hui Sun, David Uminsky, and James von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci. 13 (2015), no. 4, 955–985. MR 3325085, DOI 10.4310/CMS.2015.v13.n4.a6
- Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah, Julia: a fresh approach to numerical computing, SIAM Rev. 59 (2017), no. 1, 65–98. MR 3605826, DOI 10.1137/141000671
- José A. Cañizo, José A. Carrillo, and Francesco S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 1197–1217. MR 3356997, DOI 10.1007/s00205-015-0852-3
- José Antonio Carrillo, Young-Pil Choi, and Maxime Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, Collective dynamics from bacteria to crowds, CISM Courses and Lect., vol. 553, Springer, Vienna, 2014, pp. 1–46. MR 3331178, DOI 10.1007/978-3-7091-1785-9_{1}
- José A. Carrillo, Young-Pil Choi, and Sergio P. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, Active particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017, pp. 259–298. MR 3644593
- José Antonio Carrillo, Annachiara Colombi, and Marco Scianna, Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles, J. Theoret. Biol. 445 (2018), 75–91. MR 3772722, DOI 10.1016/j.jtbi.2018.02.022
- J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J. 156 (2011), no. 2, 229–271. MR 2769217, DOI 10.1215/00127094-2010-211
- José A. Carrillo, Massimo Fornasier, Giuseppe Toscani, and Francesco Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2010, pp. 297–336. MR 2744704, DOI 10.1007/978-0-8176-4946-3_{1}2
- José A. Carrillo and Yanghong Huang, Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models 10 (2017), no. 1, 171–192. MR 3579568, DOI 10.3934/krm.2017007
- J. A. Carrillo, Y. Huang, and S. Martin, Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math. 25 (2014), no. 5, 553–578. MR 3251743, DOI 10.1017/S0956792514000126
- José A. Carrillo, Robert J. McCann, and Cédric Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana 19 (2003), no. 3, 971–1018. MR 2053570, DOI 10.4171/RMI/376
- J. A. Carrillo and R. Shu, From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials, arXiv:2107.05079v1, 2021.
- Rustum Choksi, Razvan C. Fetecau, and Ihsan Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), no. 6, 1283–1305. MR 3425263, DOI 10.1016/j.anihpc.2014.09.004
- David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 3rd ed., Applied Mathematical Sciences, vol. 93, Springer, New York, 2013. MR 2986407, DOI 10.1007/978-1-4614-4942-3
- P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1677884
- M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96 (2006), 104302, DOI 10.1103/PhysRevLett.96.104302.
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981. Based on notes left by Harry Bateman; Reprint of the 1953 original. MR 698780
- Walter Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR 2061539, DOI 10.1093/oso/9780198506720.001.0001
- P. G. Gormley, A Generalization of Neumann’s Formula for Qn(Z), J. London Math. Soc. 9 (1934), no. 2, 149–152. MR 1574331, DOI 10.1112/jlms/s1-9.2.149
- T. S. Gutleb, J. A. Carrillo, and S. Olver, 1D power law equilibrium measure transition from single to two interval support, Figshare, 2020, DOI 10.6084/m9.figshare.13095821.v3.
- Timon S. Gutleb and Sheehan Olver, A sparse spectral method for Volterra integral equations using orthogonal polynomials on the triangle, SIAM J. Numer. Anal. 58 (2020), no. 3, 1993–2018. MR 4117305, DOI 10.1137/19M1267441
- M. F. Hagan and D. Chandler, Dynamic pathways for viral capsid assembly, Biophys. J., 91 (2006), 42–54, DOI 10.1529/biophysj.105.076851.
- William W. Hager and Hongchao Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software 32 (2006), no. 1, 113–137. MR 2272354, DOI 10.1145/1132973.1132979
- Nicholas Hale, An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type, IMA J. Numer. Anal. 39 (2019), no. 4, 1727–1746. MR 4019039, DOI 10.1093/imanum/dry042
- Nicholas Hale and Sheehan Olver, A fast and spectrally convergent algorithm for rational-order fractional integral and differential equations, SIAM J. Sci. Comput. 40 (2018), no. 4, A2456–A2491. MR 3841617, DOI 10.1137/16M1104901
- Darryl D. Holm and Vakhtang Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D 220 (2006), no. 2, 183–196. MR 2256869, DOI 10.1016/j.physd.2006.07.010
- Yanghong Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bull. Lond. Math. Soc. 46 (2014), no. 4, 857–869. MR 3239623, DOI 10.1112/blms/bdu045
- Theodore Kolokolnikov, José A. Carrillo, Andrea Bertozzi, Razvan Fetecau, and Mark Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D 260 (2013), 1–4. MR 3143990, DOI 10.1016/j.physd.2013.06.011
- Orlando Lopes, Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun. Pure Appl. Anal. 18 (2019), no. 5, 2265–2282. MR 3962176, DOI 10.3934/cpaa.2019102
- N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions, Comput. Phys. Comm. 178 (2008), no. 7, 535–551. MR 2585243, DOI 10.1016/j.cpc.2007.11.007
- Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Introduction to fractional differential equations, Nonlinear Systems and Complexity, vol. 25, Springer, Cham, 2019. MR 3839288, DOI 10.1007/978-3-030-00895-6
- Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
- P. Mogensen and A. Riseth, Optim: a mathematical optimization package for Julia, J. Open Source Software 3 (2018), 615, DOI 10.21105/joss.00615.
- M. Thamban Nair, Linear operator equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. Approximation and regularization. MR 2521497, DOI 10.1142/9789812835659
- Billel Neggal, Nadjib Boussetila, and Faouzia Rebbani, Projected Tikhonov regularization method for Fredholm integral equations of the first kind, J. Inequal. Appl. , posted on (2016), Paper No. 195, 21. MR 3536089, DOI 10.1186/s13660-016-1137-6
- F. W. J. Olver, A. B. O. Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders (eds.), NIST Digital Library of Mathematical Functions, Dec. 2018, dlmf.nist.gov.
- Sheehan Olver, Computation of equilibrium measures, J. Approx. Theory 163 (2011), no. 9, 1185–1207. MR 2832750, DOI 10.1016/j.jat.2011.03.010
- S. Olver, JuliaApproximation/ApproxFun.jl v0.12.6, Aug. 2021, github.com/JuliaApproximation/ApproxFun.jl (accessed 2021-27-08), Software package.
- Sheehan Olver and Alex Townsend, A fast and well-conditioned spectral method, SIAM Rev. 55 (2013), no. 3, 462–489. MR 3089410, DOI 10.1137/120865458
- Sheehan Olver, Richard Mikaël Slevinsky, and Alex Townsend, Fast algorithms using orthogonal polynomials, Acta Numer. 29 (2020), 573–699. MR 4189295, DOI 10.1017/S0962492920000045
- Julia K. Parrish and William M. Hamner (eds.), Animal groups in three dimensions, Cambridge University Press, Cambridge, 1997. MR 1605064, DOI 10.1017/CBO9780511601156
- John W. Pearson, Sheehan Olver, and Mason A. Porter, Numerical methods for the computation of the confluent and Gauss hypergeometric functions, Numer. Algorithms 74 (2017), no. 3, 821–866. MR 3611557, DOI 10.1007/s11075-016-0173-0
- David L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach. 9 (1962), 84–97. MR 134481, DOI 10.1145/321105.321114
- G. Ia. Popov, Some properties of classical polynomials and their application to contact problems, Prikl. Mat. Meh. 27, 821–832 (Russian); English transl., J. Appl. Math. Mech. 27 (1963), 1255–1271. MR 160363, DOI 10.1016/0021-8928(63)90066-2
- Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
- R. M. Slevinsky, Conquering the pre-computation in two-dimensional harmonic polynomial transforms, arXiv:1711.07866, 2017.
- Richard Mikaël Slevinsky, Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series, Appl. Comput. Harmon. Anal. 47 (2019), no. 3, 585–606. MR 3994987, DOI 10.1016/j.acha.2017.11.001
- R. M. Slevinsky, FastTransforms v0.5.1, Mar. 2021, github.com/MikaelSlevinsky/FastTransforms (accessed 2019-01-11).
- R. M. Slevinsky and S. Olver, JuliaMath/HypergeometricFunctions.jl, July 2020, github.com/JuliaMath/HypergeometricFunctions.jl (accessed 2019-12-09).
- A. N. Tihonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR 151 (1963), 501–504 (Russian). MR 162377
- A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dok. 4 no. 6, (1963), 1624–1627.
- Chad M. Topaz, Andrea L. Bertozzi, and Mark A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (2006), no. 7, 1601–1623. MR 2257718, DOI 10.1007/s11538-006-9088-6
- Alex Townsend and Sheehan Olver, The automatic solution of partial differential equations using a global spectral method, J. Comput. Phys. 299 (2015), 106–123. MR 3384719, DOI 10.1016/j.jcp.2015.06.031
- Alex Townsend, Marcus Webb, and Sheehan Olver, Fast polynomial transforms based on Toeplitz and Hankel matrices, Math. Comp. 87 (2018), no. 312, 1913–1934. MR 3787396, DOI 10.1090/mcom/3277
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- James H. von Brecht, David Uminsky, Theodore Kolokolnikov, and Andrea L. Bertozzi, Predicting pattern formation in particle interactions, Math. Models Methods Appl. Sci. 22 (2012), no. suppl. 1, 1140002, 31. MR 2974182, DOI 10.1142/S0218202511400021
- Wolfram Research, Inc., The mathematical functions site, 2020, functions.wolfram.com (accessed 2020-01-19).
Bibliographic Information
- Timon S. Gutleb
- Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- MR Author ID: 1384319
- ORCID: 0000-0002-8239-2372
- Email: t.gutleb18@imperial.ac.uk
- José A. Carrillo
- Affiliation: Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- ORCID: 0000-0001-8819-4660
- Email: carrillo@maths.ox.ac.uk
- Sheehan Olver
- Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- MR Author ID: 783322
- ORCID: 0000-0001-6920-0826
- Email: s.olver@imperial.ac.uk
- Received by editor(s): October 30, 2020
- Received by editor(s) in revised form: August 28, 2021
- Published electronically: June 14, 2022
- Additional Notes: The second author was supported by the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex Particle Dynamics: Phase Transitions, Patterns and Synchronization) of the European Research Council Executive Agency (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 883363). The third author was supported by the Leverhulme Trust Research Project Grant RPG-2019-144. The second and third authors were also supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/T022132/1.
The first author is the corresponding author - © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2247-2281
- MSC (2020): Primary 65N35; Secondary 65R20, 65K10
- DOI: https://doi.org/10.1090/mcom/3740
- MathSciNet review: 4451462