On the inf-sup stability of Crouzeix-Raviart Stokes elements in 3D
HTML articles powered by AMS MathViewer
- by Stefan Sauter and Céline Torres;
- Math. Comp. 92 (2023), 1033-1059
- DOI: https://doi.org/10.1090/mcom/3793
- Published electronically: November 30, 2022
- HTML | PDF | Request permission
Abstract:
We consider discretizations of the stationary Stokes equation in three spatial dimensions by non-conforming Crouzeix-Raviart elements. The original definition in the seminal paper by M. Crouzeix and P.-A. Raviart in 1973 [Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), pp. 33–75] is implicit and also contains substantial freedom for a concrete choice.
In this paper, we introduce basic Crouzeix-Raviart spaces in 3D in analogy to the 2D case in a fully explicit way. We prove that this basic Crouzeix-Raviart element for the Stokes equation is inf-sup stable for polynomial degree $k=2$ (quadratic velocity approximation). We identify spurious pressure modes for the conforming $\left ( k,k-1\right )$ 3D Stokes element and show that these are eliminated by using the basic Crouzeix-Raviart space.
References
- Mark Ainsworth and Richard Rankin, Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements, SIAM J. Numer. Anal. 46 (2008), no. 6, 3207–3232. MR 2448662, DOI 10.1137/07070838X
- Á. Baran and G. Stoyan, Gauss-Legendre elements: a stable, higher order non-conforming finite element family, Computing 79 (2007), no. 1, 1–21. MR 2282333, DOI 10.1007/s00607-007-0219-1
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Susanne C. Brenner, Forty years of the Crouzeix-Raviart element, Numer. Methods Partial Differential Equations 31 (2015), no. 2, 367–396. MR 3312124, DOI 10.1002/num.21892
- C. Carstensen and S. Sauter, Critical functions and inf-sup stability of Crouzeix-Raviart elements, Comput. Math. Appl. 108 (2022), 12–23. MR 4364795, DOI 10.1016/j.camwa.2021.12.010
- Carsten Carstensen and Stefan A. Sauter, Crouzeix-Raviart triangular elements are inf-sup stable, Math. Comp. 91 (2022), no. 337, 2041–2057. MR 4451455, DOI 10.1090/mcom/3742
- Youngjoon Cha, Miyoung Lee, and Sungyun Lee, Stable nonconforming methods for the Stokes problem, Appl. Math. Comput. 114 (2000), no. 2-3, 155–174. MR 1777283, DOI 10.1016/S0096-3003(99)00109-5
- Patrick Ciarlet, Charles F. Dunkl, and Stefan A. Sauter, A family of Crouzeix-Raviart finite elements in 3D, Anal. Appl. (Singap.) 16 (2018), no. 5, 649–691. MR 3850091, DOI 10.1142/S0219530518500070
- P. G. Ciarlet, P. Ciarlet, S. A. Sauter, and C. Simian, Intrinsic finite element methods for the computation of fluxes for Poisson’s equation, Numer. Math. 132 (2016), no. 3, 433–462. MR 3457435, DOI 10.1007/s00211-015-0730-9
- Michel Crouzeix and Richard S. Falk, Nonconforming finite elements for the Stokes problem, Math. Comp. 52 (1989), no. 186, 437–456. MR 958870, DOI 10.1090/S0025-5718-1989-0958870-8
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge University Press, Cambridge, 2014. MR 3289583, DOI 10.1017/CBO9781107786134
- M. Fortin, A three-dimensional quadratic nonconforming element, Numer. Math. 46 (1985), no. 2, 269–279. MR 787211, DOI 10.1007/BF01390424
- M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg. 19 (1983), no. 4, 505–520. MR 702056, DOI 10.1002/nme.1620190405
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Johnny Guzmán and L. Ridgway Scott, The Scott-Vogelius finite elements revisited, Math. Comp. 88 (2019), no. 316, 515–529. MR 3882274, DOI 10.1090/mcom/3346
- Michael Neilan, Discrete and conforming smooth de Rham complexes in three dimensions, Math. Comp. 84 (2015), no. 295, 2059–2081. MR 3356019, DOI 10.1090/S0025-5718-2015-02958-5
- L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691, DOI 10.1051/m2an/1985190101111
- Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9–23. MR 725982, DOI 10.1090/S0025-5718-1984-0725982-9
- Rolf Stenberg, Error analysis of some finite element methods for the Stokes problem, Math. Comp. 54 (1990), no. 190, 495–508. MR 1010601, DOI 10.1090/S0025-5718-1990-1010601-X
- G. Stoyan and Á. Baran, Crouzeix-Velte decompositions for higher-order finite elements, Comput. Math. Appl. 51 (2006), no. 6-7, 967–986. MR 2228893, DOI 10.1016/j.camwa.2005.10.011
Bibliographic Information
- Stefan Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@math.uzh.ch
- Céline Torres
- Affiliation: Department of Mathematics, University of Maryland, 4176 Campus Drive - William E. Kirwan Hall, College Park, Maryland 20742
- ORCID: 0000-0001-9654-7438
- Email: cetorres@umd.edu
- Received by editor(s): May 1, 2022
- Received by editor(s) in revised form: July 22, 2022
- Published electronically: November 30, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 1033-1059
- MSC (2020): Primary 65N30, 65N12, 76D07, 33C45
- DOI: https://doi.org/10.1090/mcom/3793
- MathSciNet review: 4550319