A note on the representations of nilpotent Lie algebras
Author:
Charles W. Curtis
Journal:
Proc. Amer. Math. Soc. 5 (1954), 813-824
MSC:
Primary 09.1X
DOI:
https://doi.org/10.1090/S0002-9939-1954-0064029-X
Erratum:
Proc. Amer. Math. Soc. 5 (1954), 1001-1001.
MathSciNet review:
0064029
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. vol. 38 (1937) pp. 326-332.
- [2] C. Chevalley, Théorie des groupes de Lie, vol. II, Paris, 1951.
- [3] -, Théorie des groupes de Lie, vol. III, to appear.
- [4] Charles W. Curtis, Noncommutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945–955. MR 59254, https://doi.org/10.1090/S0002-9939-1953-0059254-7
- [5] Charles W. Curtis, The structure of non-semisimple algebras, Duke Math. J. 21 (1954), 79–85. MR 61095
- [6] N. Jacobson, Restricted Lie algebras of characteristic 𝑝, Trans. Amer. Math. Soc. 50 (1941), 15–25. MR 5118, https://doi.org/10.1090/S0002-9947-1941-0005118-0
- [7] -, Un généralisation du Théorème d'Engel, C. R. Acad. Sci. Paris vol. 234 (1952) pp. 679-681.
- [8] E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. vol. 176 (1937) pp. 126-140.
- [9] H. Zassenhaus, Über Liesche Ringe mit Primzahlcharacteristik, Abh. Math. Sem. Hansischen Univ. vol. 13 (1940) pp. 1-100.
- [10] Hans Zassenhaus, Darstellungstheorie nilpotenter Lie-Ringe bei Charakteristik 𝑝>0, J. Reine Agnew. Math. 182 (1940), 150–155 (German). MR 0002849, https://doi.org/10.1515/crll.1940.182.150
- [11] Hans Zassenhaus, Über die Darstellungen der Lie-Algebren bei Charakteristik 0, Comment. Math. Helv. 26 (1952), 252–274 (German). MR 51831, https://doi.org/10.1007/BF02564305
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 09.1X
Retrieve articles in all journals with MSC: 09.1X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1954-0064029-X
Article copyright:
© Copyright 1954
American Mathematical Society