Mersenne and Fermat numbers
HTML articles powered by AMS MathViewer
- by Raphael M. Robinson
- Proc. Amer. Math. Soc. 5 (1954), 842-846
- DOI: https://doi.org/10.1090/S0002-9939-1954-0064787-4
- PDF | Request permission
References
- R. C. Archibald, Mersenne’s numbers, Scripta Mathematica vol. 3 (1935) pp. 112-119.
- Charles B. Barker, Proof that the Mersenne number $M_{167}$ is composite, Bull. Amer. Math. Soc. 51 (1945), 389. MR 12077, DOI 10.1090/S0002-9904-1945-08362-1 E. Fauquembergue, Nombres de Mersenne, Sphinx-Œdipe, vol. 9 (1914) pp. 103-105; vol. 15 (1920) pp. 17-18.
- Maurice Kraitchik, On the factorization of $2^n\pm 1$, Scripta Math. 18 (1952), 39–52. MR 49113 D. H. Lehmer, Note on the Mersenne number ${2^{139}} - 1$, Bull. Amer. Math. Soc. vol. 32 (1926) p. 522; Note on Mersenne numbers, ibid. vol. 38 (1932) pp. 383-384.
- D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3, 419–448. MR 1502953, DOI 10.2307/1968235 —, Recent discoveries of large primes, Mathematical Tables and Other Aids to Computation vol. 6 (1952) p. 61; A new Mersenne prime, ibid. p. 205; Two new Mersenne primes, ibid. vol. 7 (1953) p. 72.
- J. C. Morehead, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 11 (1905), no. 10, 543–545. MR 1558255, DOI 10.1090/S0002-9904-1905-01255-6
- J. C. Morehead and A. E. Western, Note on Fermat’s numbers, Bull. Amer. Math. Soc. 16 (1909), no. 1, 1–6. MR 1558828, DOI 10.1090/S0002-9904-1909-01841-5 R. E. Powers, Certain composite Mersenne’s numbers, Proc. London Math. Soc. (2) vol. 15 (1916) p. xxii; Note on a Mersenne number, Bull. Amer. Math. Soc. vol. 40 (1934) p. 883. J. L. Selfridge, Factors of Fermat numbers, Mathematical Tables and Other Aids to Computation vol. 7 (1953) pp. 274-275.
- H. S. Uhler, First proof that the Mersenne number $M_{157}$ is composite, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 314–316. MR 10705, DOI 10.1073/pnas.30.10.314
- Horace S. Uhler, A brief history of the investigations on Mersenne numbers and the latest immense primes, Scripta Math. 18 (1952), 122–131. MR 50512
Bibliographic Information
- © Copyright 1954 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 5 (1954), 842-846
- MSC: Primary 10.0X
- DOI: https://doi.org/10.1090/S0002-9939-1954-0064787-4
- MathSciNet review: 0064787