The zeros of quasi-analytic functions

Author:
Arthur O. Garder

Journal:
Proc. Amer. Math. Soc. **6** (1955), 929-941

MSC:
Primary 27.2X

DOI:
https://doi.org/10.1090/S0002-9939-1955-0077595-6

MathSciNet review:
0077595

Full-text PDF

References | Similar Articles | Additional Information

**[1]**I. I. Hirschman Jr.,*On the behaviour of Fourier transforms at infinity and on quasi-analytic classes of functions*, Amer. J. Math.**72**(1950), 200–213. MR**0032816**, https://doi.org/10.2307/2372147**[2]**I. I. Hirschman Jr.,*On the distributions of the zeros of functions belonging to certain quasi-analytic classes*, Amer. J. Math.**72**(1950), 396–406. MR**0034419**, https://doi.org/10.2307/2372041**[3]**I. I. Hirschman Jr. and D. V. Widder,*The inversion of a general class of convolution transforms*, Trans. Amer. Math. Soc.**66**(1949), 135–201. MR**0032817**, https://doi.org/10.1090/S0002-9947-1949-0032817-4**[4]**A. Kolmogoroff,*On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval*, Amer. Math. Soc. Translation**1949**(1949), no. 4, 19. MR**0031009****[5]**S. Mandelbrojt,*Analytic functions and classes of infinitely differentiable functions*, Rice Inst. Pamphlet**29**(1942), no. 1, 142. MR**0006354****[6]**E. C. Titchmarsh,*The theory of functions*, 2d ed., Oxford, 1939.**[7]**-,*Introduction to the theory of Fourier integrals*, Oxford, 1948.**[8]**I. I. Hirschman and D. V. Widder,*The convolution transform*, Princeton University Press, Princeton, N. J., 1955. MR**0073746**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
27.2X

Retrieve articles in all journals with MSC: 27.2X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1955-0077595-6

Article copyright:
© Copyright 1955
American Mathematical Society