Basic sets of polynomial solutions for partial differential equations.
Author:
J. Horváth
Journal:
Proc. Amer. Math. Soc. 9 (1958), 569-575
MSC:
Primary 35.00
DOI:
https://doi.org/10.1090/S0002-9939-1958-0103330-1
MathSciNet review:
0103330
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] N. Bourbaki, Eléments de mathématique, Livre II: Algèbre, Chaps. IV--V, Actualités Scientifiques et Industrielles, no. 1102, Paris, 1950.
- [2] J. Horváth, Singular integral operators and spherical harmonics, Trans. Amer. Math. Soc. 82 (1956), 52–63. MR 86937, https://doi.org/10.1090/S0002-9947-1956-0086937-2
- [3]
E. Lammel, Über eine zur Differentialgleichung
- [4] -, Generalizaciones de la teoría de las funciones de variables complejas, Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latino América, Villavicencio-Mendoza, 1954, pp. 191-197.
- [5] E. P. Miles Jr. and Ernest Williams, A basic set of homogeneous harmonic polynomials in 𝑘 variables, Proc. Amer. Math. Soc. 6 (1955), 191–194. MR 72239, https://doi.org/10.1090/S0002-9939-1955-0072239-1
- [6] E. P. Miles Jr. and E. Williams, A note on basic sets of homogeneous harmonic polynomials, Proc. Amer. Math. Soc. 6 (1955), 769–770. MR 73708, https://doi.org/10.1090/S0002-9939-1955-0073708-0
- [7] E. P. Miles Jr. and Ernest Williams, A basic set of polynomial solutions for the Euler-Poisson-Darboux and Beltrami equations, Amer. Math. Monthly 63 (1956), 401–404. MR 81407, https://doi.org/10.2307/2309401
- [8] E. P. Miles Jr. and Ernest Williams, The Cauchy problem for linear partial differential equations with restricted boundary conditions, Canadian J. Math. 8 (1956), 426–431. MR 81408, https://doi.org/10.4153/CJM-1956-050-5
- [9] -, Basic sets of polyharmonic polynomials, Abstract, Amer. Math. Monthly vol. 63 (1956) p. 528.
- [10] M. H. Protter, Generalized spherical harmonics, Trans. Amer. Math. Soc. 63 (1948), 314–341. MR 24533, https://doi.org/10.1090/S0002-9947-1948-0024533-9
- [11] E. T. Whittaker, On the partial differential equations of mathematical physics, Math. Ann. 57 (1903), no. 3, 333–355. MR 1511213, https://doi.org/10.1007/BF01444290
- [12] M. C. Wicht, Recursion and interrelations for Miles-Williams biharmonics, Abstract, Amer. Math. Monthly vol. 64 (1957) p. 463.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35.00
Retrieve articles in all journals with MSC: 35.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1958-0103330-1
Article copyright:
© Copyright 1958
American Mathematical Society