A new proof that nilpotent groups are CCR
HTML articles powered by AMS MathViewer
- by J. M. G. Fell
- Proc. Amer. Math. Soc. 13 (1962), 93-99
- DOI: https://doi.org/10.1090/S0002-9939-1962-0133404-1
- PDF | Request permission
References
- J. Dixmier, L’application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France 85 (1957), 113–121 (French). MR 92930
- Jacques Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. V, Bull. Soc. Math. France 87 (1959), 65–79 (French). MR 115097
- J. M. G. Fell, The dual spaces of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365–403. MR 146681, DOI 10.1090/S0002-9947-1960-0146681-0
- J. M. G. Fell, $C^{\ast }$-algebras with smooth dual, Illinois J. Math. 4 (1960), 221–230. MR 124754
- J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268. MR 150241, DOI 10.4153/CJM-1962-016-6
- James Glimm, Type I $C^{\ast }$-algebras, Ann. of Math. (2) 73 (1961), 572–612. MR 124756, DOI 10.2307/1970319
- A. A. Kirillov, On unitary representation of nilpotent Lie groups, Soviet Math. Dokl. 1 (1960), 108–110. MR 0133406
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Alex Rosenberg, The number of irreducible representations of simple rings with no minimal ideals, Amer. J. Math. 75 (1953), 523–530. MR 57477, DOI 10.2307/2372501
- Osamu Takenouchi, Sur la facteur-représentation d’un groupe de Lie résoluble de type (E), Math. J. Okayama Univ. 7 (1957), 151–161 (French). MR 97464
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 13 (1962), 93-99
- MSC: Primary 22.60
- DOI: https://doi.org/10.1090/S0002-9939-1962-0133404-1
- MathSciNet review: 0133404