An asymptotic phase for a Sturm-Liouville operator with unbounded potential
HTML articles powered by AMS MathViewer
- by Richard C. Gilbert
- Proc. Amer. Math. Soc. 18 (1967), 967-973
- DOI: https://doi.org/10.1090/S0002-9939-1967-0224891-3
- PDF | Request permission
References
- V. S. Buslaev, Trace formulas for the Schrödinger operator in a three-dimensional space, Dokl. Akad. Nauk SSSR 143 (1962), 1067–1070 (Russian). MR 0133691
- V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville differential operator, Soviet Math. Dokl. 1 (1960), 451–454. MR 0120417
- M. G. Gasymov, Analytic properties of the spectral function of the self-adjoint Sturm-Liouville operator, Dokl. Akad. Nauk SSSR 150 (1963), 971–974 (Russian). MR 0151662
- M. G. Gasymov, On the sum of the differences of the eigenvalues of two self-adjoint operators, Dokl. Akad. Nauk SSSR 150 (1963), 1202–1205 (Russian). MR 0152698
- Richard C. Gilbert and Vernon A. Kramer, Trace formulas for a perturbed operator, Duke Math. J. 30 (1963), 275–296. MR 151870
- Richard C. Gilbert and Vernon A. Kramer, Trace formulas for powers of a Sturm-Liouville operator, Canadian J. Math. 16 (1964), 412–422. MR 164255, DOI 10.4153/CJM-1964-043-4
- M. G. Kreĭn, On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268–271 (Russian). MR 0139006
- E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, at the Clarendon Press, 1946 (German). MR 0019765
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 967-973
- MSC: Primary 34.30
- DOI: https://doi.org/10.1090/S0002-9939-1967-0224891-3
- MathSciNet review: 0224891