Sufficient conditions for a closed set to lie on the boundary of a $3$-cell
HTML articles powered by AMS MathViewer
- by L. D. Loveland
- Proc. Amer. Math. Soc. 19 (1968), 649-652
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227961-X
- PDF | Request permission
References
- R. H. Bing, Each disk in $E^{3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583–590. MR 146811, DOI 10.2307/2372864
- R. H. Bing, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145–192. MR 150744, DOI 10.2307/1970203
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80–97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2 C. E. Burgess and L. D. Loveland, Sequentially $1{\text { - ULC}}$ surfaces in ${S^3}$, Notices Amer. Math. Soc. 14 (1967), 96.
- David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459–476. MR 160193, DOI 10.2307/2373136
- F. M. Lister, Simplifying intersections of disks in Bing’s side approximation theorem, Pacific J. Math. 22 (1967), 281–295. MR 216484
- L. D. Loveland, Tame subsets of spheres in $E^{3}$, Pacific J. Math. 19 (1966), 489–517. MR 225309
- L. D. Loveland, Tame surfaces and tame subsets of spheres in $E^{3}$, Trans. Amer. Math. Soc. 123 (1966), 355–368. MR 199850, DOI 10.1090/S0002-9947-1966-0199850-3
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 649-652
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227961-X
- MathSciNet review: 0227961