Intersection theorems for positive sets
HTML articles powered by AMS MathViewer
- by Wolfhard Hansen and Victor Klee
- Proc. Amer. Math. Soc. 22 (1969), 450-457
- DOI: https://doi.org/10.1090/S0002-9939-1969-0254563-2
- PDF | Request permission
References
- Leonard M. Blumenthal, Metric methods in linear inequalities, Duke Math. J. 15 (1948), 955–966. MR 28596
- William Bonnice and Victor L. Klee, The generation of convex hulls, Math. Ann. 152 (1963), 1–29. MR 156177, DOI 10.1007/BF01343728 L. Danzer, B. Grünbaum, and V. Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., Vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 101-180.
- Chandler Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954), 733–746. MR 64011, DOI 10.2307/2372648 L. L. Dines and N. H. McCoy, On linear inequalities, Trans. Roy. Soc. Canada 27 (1933), 37-70. D. Gale, Linear combinations of vectors with non-negative coefficients, Amer. Math. Monthly 59 (1952), 46-47.
- William Gustin, On the interior of the convex hull of a Euclidean set, Bull. Amer. Math. Soc. 53 (1947), 299–301. MR 20800, DOI 10.1090/S0002-9904-1947-08787-5 E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Mat.-Verein. 32 (1923), 175-176.
- Richard L. McKinney, Positive bases for linear spaces, Trans. Amer. Math. Soc. 103 (1962), 131–148. MR 147879, DOI 10.1090/S0002-9947-1962-0147879-X
- Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI 10.1007/BF01464231
- J. R. Reay, Unique minimal representations with positive bases, Amer. Math. Monthly 73 (1966), 253–261. MR 199684, DOI 10.2307/2315336
- Chas. V. Robinson, Spherical theorems of Helly type and congruence indices of spherical caps, Amer. J. Math. 64 (1942), 260–272. MR 6420, DOI 10.2307/2371682 E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme. II, J. Reine Angew. Math. 144 (1914), 1-40.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 22 (1969), 450-457
- MSC: Primary 46.06; Secondary 52.00
- DOI: https://doi.org/10.1090/S0002-9939-1969-0254563-2
- MathSciNet review: 0254563