Free coalgebras in a category of rings
HTML articles powered by AMS MathViewer
- by Robert Davis
- Proc. Amer. Math. Soc. 25 (1970), 155-158
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258712-X
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 25 (1970), 922.
Abstract:
Let $\mathcal {R}$ be the category of commutative rings with unity and unity-preserving homomorphisms, and let $\Pi$ be a small algebraic theory, i.e., an algebraic theory with a rank in the sense of Linton. The category $\mathcal {A}$ of $\Pi$-coalgebras in $\mathcal {R}$ is the category of coproduct-preserving functors ${\Pi ^{\ast }} \to \mathcal {R}$. We prove that the standard forgetful functor $U:\mathcal {A} \to \mathcal {R}$ has a right adjoint $V$.References
- F. E. J. Linton, Some aspects of equational categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 84–94. MR 0209335
- I. G. Macdonald, Algebraic geometry. Introduction to schemes, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0238845
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 155-158
- MSC: Primary 08.30; Secondary 18.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258712-X
- MathSciNet review: 0258712