Not all semiregular Urysohn-closed spaces are Katětov-Urysohn
HTML articles powered by AMS MathViewer
- by Jack R. Porter
- Proc. Amer. Math. Soc. 25 (1970), 518-520
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257955-9
- PDF | Request permission
Abstract:
A topological space is said to be Urysohn if every pair of distinct points have disjoint closed neighborhoods. In this note we give an example of a first countable semiregular Urysohn space which is closed in every Urysohn space in which it can be embedded, and on which there exists neither a coarser minimal Urysohn topology nor a coarser minimal first countable Urysohn topology.References
- Bernhard Banaschewski, Über zwei Extremaleigenschaften topologischer Räume, Math. Nachr. 13 (1955), 141–150 (German). MR 70993, DOI 10.1002/mana.19550130303
- B. Banaschewski, On the Weierstrass-Stone approximation theorem, Fund. Math. 44 (1957), 249–252. MR 92931, DOI 10.4064/fm-44-3-249-252
- Manuel P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97–105. MR 150724, DOI 10.1090/S0002-9947-1963-0150724-0 M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., A survey of minimal topological spaces, Proc. Kanpur Topological Conference, 1968 (to appear).
- Horst Herrlich, $T_{v}$-Abgeschlossenheit und $T_{v}$-Minimalität, Math. Z. 88 (1965), 285–294 (German). MR 184191, DOI 10.1007/BF01111687
- Miroslav Katětov, Über H-abgeschlossene und bikompakte Räume, Časopis Pěst. Mat. Fys. 69 (1940), 36–49 (German, with Czech summary). MR 0001912
- C. T. Scarborough, Minimal Urysohn spaces, Pacific J. Math. 27 (1968), 611–617. MR 238254
- C. T. Scarborough and R. M. Stephenson, Minimal topologies, Colloq. Math. 19 (1968), 215–219. MR 227938, DOI 10.4064/cm-19-2-215-219
- N. Smythe and C. A. Wilkins, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167–171. MR 0154254
- R. M. Stephenson Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115–127. MR 238261, DOI 10.1090/S0002-9947-1969-0238261-1
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 518-520
- MSC: Primary 54.20
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257955-9
- MathSciNet review: 0257955