A weak Nullstellensatz for valuations
HTML articles powered by AMS MathViewer
- by George M. Bergman PDF
- Proc. Amer. Math. Soc. 28 (1971), 32-38 Request permission
Abstract:
Given a real-valued pseudovaluation $p$ on a commutative ring $R$, we show how to obtain a valuation $v$ greater than or equal to $p$, and also satisfying certain upper bounds: in particular, if $p(st) = p(s) + p(t)$ for all $s,t \in S,S$ a multiplicative semigroup in $R$, then $v$ can be chosen so that $v(s) = p(s)$ for all $s \in S$.References
- P. M. Cohn, An invariant characterization of pseudo-valuations on a field, Proc. Cambridge Philos. Soc. 50 (1954), 159–177. MR 64027, DOI 10.1017/s0305004100029200
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 32-38
- MSC: Primary 13.98
- DOI: https://doi.org/10.1090/S0002-9939-1971-0272780-1
- MathSciNet review: 0272780