On roots and subsemigroups of nilpotent groups
HTML articles powered by AMS MathViewer
- by Joseph E. Kuczkowski
- Proc. Amer. Math. Soc. 28 (1971), 50-52
- DOI: https://doi.org/10.1090/S0002-9939-1971-0274585-4
- PDF | Request permission
Abstract:
${E_\omega },{U_\omega }$ and ${D_\omega }$ semigroups are defined by extrapolating the definitions of their group counterparts; and a class $n$ semigroup is defined to be a subsemigroup of a class $n$ group. The purpose of this paper is to show that a class $n{E_\omega }$ semigroup generates an ${E_\omega }$ group and that a class $n$ semigroup is ${U_\omega }$ if and only if it generates a ${U_\omega }$ group.References
- Gilbert Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217–303. MR 122859, DOI 10.1007/BF02546390 P. Hall, Nilpotent groups, Canadian Mathematical Congress Summer Seminar, University of Alberta, 1957.
- B. H. Neumann and Tekla Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc. London Ser. A 274 (1963), 1–4. MR 159884, DOI 10.1098/rspa.1963.0110
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 28 (1971), 50-52
- MSC: Primary 20.40
- DOI: https://doi.org/10.1090/S0002-9939-1971-0274585-4
- MathSciNet review: 0274585