A brief proof of Cauchy’s integral theorem
HTML articles powered by AMS MathViewer
- by John D. Dixon
- Proc. Amer. Math. Soc. 29 (1971), 625-626
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277699-8
- PDF | Request permission
Abstract:
A short proof of Cauchy’s theorem for circuits homologous to 0 is presented. The proof uses elementary local properties of analytic functions but no additional geometric or topological arguments.References
- Lars V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0188405
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Rolf Nevanlinna and V. Paatero, Einführung in die Funktionentheorie, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 30, Birkhäuser Verlag, Basel-Stuttgart, 1965 (German). MR 0201609, DOI 10.1007/978-3-0348-4010-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 29 (1971), 625-626
- MSC: Primary 30.35
- DOI: https://doi.org/10.1090/S0002-9939-1971-0277699-8
- MathSciNet review: 0277699