Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Embedding rational division algebras
HTML articles powered by AMS MathViewer

by Burton Fein
Proc. Amer. Math. Soc. 32 (1972), 427-429
DOI: https://doi.org/10.1090/S0002-9939-1972-0289568-9

Abstract:

Necessary and sufficient conditions are given for two K-division rings, K an algebraic number field, to have precisely the same set of subfields. Using this, an example is presented of two K-division rings having precisely the same set of subfields such that only one of the division rings can be embedded in a Q-division ring.
References
  • A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
  • E. Artin and J. Tate, Class field theory, Harvard Univ. Press, Cambridge, Mass., 1961. (Cf. MR 36 #6383.)
  • Max Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, Springer-Verlag, Berlin-New York, 1968 (German). Zweite, korrigierte auflage. MR 0228526
  • Burton Fein and Murray Schacher, Embedding finite groups in rational division algebras. I, J. Algebra 17 (1971), 412–428. MR 272821, DOI 10.1016/0021-8693(71)90023-8
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.46
  • Retrieve articles in all journals with MSC: 16.46
Bibliographic Information
  • © Copyright 1972 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 32 (1972), 427-429
  • MSC: Primary 16.46
  • DOI: https://doi.org/10.1090/S0002-9939-1972-0289568-9
  • MathSciNet review: 0289568