Closed ideals in subalgebras of Banach algebras. I
HTML articles powered by AMS MathViewer
- by J. T. Burnham PDF
- Proc. Amer. Math. Soc. 32 (1972), 551-555 Request permission
Abstract:
In this note we obtain an elementary extension of the so-called Fundamental Theorem of Segal Algebras to a special class of noncommutative Banach algebras. In particular the case of noncommutative group algebras is settled.References
- J. Cigler, Normed ideals in $L^{1}\,(G)$, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 273โ282. MR 0250086
- Ron Larsen, Teng-sun Liu, and Ju-kwei Wang, On functions with Fourier transforms in $L_{p}$, Michigan Math. J. 11 (1964), 369โ378. MR 170173
- John C. Martin and Leonard Y. H. Yap, The algebra of functions with Fourier transforms in $L^{p}$, Proc. Amer. Math. Soc. 24 (1970), 217โ219. MR 247378, DOI 10.1090/S0002-9939-1970-0247378-0
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- C. Robert Warner, Closed ideals in the group algebra $L^{1}(G)\cap L^{2}(G)$, Trans. Amer. Math. Soc. 121 (1966), 408โ423. MR 187021, DOI 10.1090/S0002-9947-1966-0187021-6
- Leonard Y. H. Yap, Ideals in subalgebras of the group algebras, Studia Math. 35 (1970), 165โ175. MR 270075, DOI 10.4064/sm-35-2-165-175
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 32 (1972), 551-555
- MSC: Primary 46H10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295078-5
- MathSciNet review: 0295078