The isometries of
Author:
Michael Cambern
Journal:
Proc. Amer. Math. Soc. 36 (1972), 173-178
MSC:
Primary 46J15; Secondary 46E40
DOI:
https://doi.org/10.1090/S0002-9939-1972-0306921-5
MathSciNet review:
0306921
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let K be a finite-dimensional Hilbert space. In this article a characterization is given of the linear isometries of the Banach space onto itself. It is shown that T is such an isometry iff T is of the form
, for
and z belonging to the unit disc, where t is a conformal map of the disc onto itself and
is an isometry of K onto K.
- [1] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
- [2] Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- [3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
- [4] Shizuo Kakutani, Rings of analytic functions, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 71–83. MR 0070060
- [5] Karel de Leeuw, Walter Rudin, and John Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694–698. MR 121646, https://doi.org/10.1090/S0002-9939-1960-0121646-9
- [6] Masao Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, K\B{o}dai Math. Sem. Rep. 11 (1959), 182–188. MR 121645
- [7] Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J15, 46E40
Retrieve articles in all journals with MSC: 46J15, 46E40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1972-0306921-5
Keywords:
Isometry,
extreme point,
maximal ideal space,
Choquet boundary,
Šilov boundary,
representing measure
Article copyright:
© Copyright 1972
American Mathematical Society