On the regularity of measures on locally compact spaces
HTML articles powered by AMS MathViewer
- by Mark Levin and Wilbur Stiles
- Proc. Amer. Math. Soc. 36 (1972), 201-206
- DOI: https://doi.org/10.1090/S0002-9939-1972-0316660-2
- PDF | Request permission
Abstract:
The purpose of this paper is to present the two following theorems: (1) Every Baire measure on the $\sigma$-algebra ${\mathcal {B}_a}$ generated by the compact ${\mathcal {G}_\delta }$ subsets of a paracompact, locally compact space is outer regular; (2) in a paracompact, locally compact space, any Baire measure on ${\mathcal {B}_a}$ can be extended to an outer regular Borel measure on the $\sigma$-algebra generated by the closed subsets. In addition, this paper contains an example which shows that neither of these two theorems is true for all arbitrary locally compact Hausdorff spaces.References
- S. K. Berberian, Counterexamples in Haar measure, Amer. Math. Monthly 73 (1966), no. 4, 135–140. MR 195984, DOI 10.2307/2313767
- S. K. Berberian, Sesquiregular measures, Amer. Math. Monthly 74 (1967), 986–990. MR 219687, DOI 10.2307/2315286
- S. K. Berberian, On the extension of Borel measures, Proc. Amer. Math. Soc. 16 (1965), 415–418. MR 176022, DOI 10.1090/S0002-9939-1965-0176022-4
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Kenneth A. Ross and Karl Stromberg, Baire sets and Baire measures, Ark. Mat. 6 (1965), 151–160 (1965). MR 196029, DOI 10.1007/BF02591355
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 201-206
- MSC: Primary 28A32
- DOI: https://doi.org/10.1090/S0002-9939-1972-0316660-2
- MathSciNet review: 0316660