On bounds for the derivative of analytic functions
HTML articles powered by AMS MathViewer
- by Dorothy Browne Shaffer
- Proc. Amer. Math. Soc. 37 (1973), 517-520
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310256-5
- PDF | Request permission
Abstract:
Let $g(z)$ be analytic and $|g(z)| \leqq 1$ in $|z| < 1;g(z) = \sum \nolimits _{k = p}^\infty {{a_k}{z^k},p \geqq 1}$, then a sharp upper bound is derived for $|g’(z)|$. Let $h(z)$ be analytic for $|z| < 1,h(0) = 1,\operatorname {Re} h(z) > \alpha$ where $0 \leqq \alpha < 1$, then bounds for $|h’(z)|$ are derived and sharpened for a function with missing terms.References
- C. Carathéodory, Theory of functions of a complex variable. Vol. 2, Chelsea, New York, 1954. MR 16, 346.
- W. M. Causey and E. P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl. 31 (1970), 579–586. MR 264047, DOI 10.1016/0022-247X(70)90010-7
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7
- Norman E. Tonti and Donald H. Trahan, Analytic functions whose real parts are bounded below, Math. Z. 115 (1970), 252–258. MR 262510, DOI 10.1007/BF01129975
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 37 (1973), 517-520
- MSC: Primary 30A76
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310256-5
- MathSciNet review: 0310256