The Hoheisel phenomenon for generalized Dirichlet series
HTML articles powered by AMS MathViewer
- by Carlos Julio Moreno
- Proc. Amer. Math. Soc. 40 (1973), 47-51
- DOI: https://doi.org/10.1090/S0002-9939-1973-0327682-0
- PDF | Request permission
Abstract:
Hoheisel’s proof that the difference between two consecutive primes is of smaller order of magnitude than either prime depends on Littlewood’s estimate for the zero-free region of the Riemann zeta function and a density estimate for the number of zeros in certain rectangles in the critical strip. In this note we derive Hoheisel’s result without appealing to Littlewood’s theorem, thus enlarging the range of applicability of Hoheisel’s argument to a more general class of Dirichlet series. Applications of the results to number theory are given.References
- K. Chandrasekharan, Arithmetical functions, Die Grundlehren der mathematischen Wissenschaften, Band 167, Springer-Verlag, New York-Berlin, 1970. MR 0277490
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187 G. Hoheisel, Primzahl probleme in der Analysis, S.-B. Preuss. Akad. Wiss. 1930, 580-588. A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser. 8 (1937), 255-266.
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- Carlos Julio Moreno, Prime number theorems for the coefficients of modular forms, Bull. Amer. Math. Soc. 78 (1972), 796–798. MR 299571, DOI 10.1090/S0002-9904-1972-13040-4 —, Prime number theorems for the coefficients of modular forms and a problem of G. H. Hardy (to appear). —, A density estimate for the Ramanujan zeta function (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 47-51
- MSC: Primary 10H10; Secondary 10H25
- DOI: https://doi.org/10.1090/S0002-9939-1973-0327682-0
- MathSciNet review: 0327682