Standard and alternative algebras with completely reducible derivation algebras
HTML articles powered by AMS MathViewer
- by Ernest L. Stitzinger
- Proc. Amer. Math. Soc. 43 (1974), 57-62
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332914-X
- PDF | Request permission
Abstract:
Let $\mathfrak {A}$ be a finite-dimensional standard or alternative algebra over a field of characteristic 0. A necessary and sufficient condition is found such that the derivation algebra of $\mathfrak {A}$ is completely reducible acting on $\mathfrak {A}$.References
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, DOI 10.1090/S0002-9947-1948-0027750-7
- Richard E. Block, A unification of the theories of Jordan and alternative algebras, Amer. J. Math. 94 (1972), 389–412. MR 313332, DOI 10.2307/2374627
- Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1152, Hermann & Cie, Paris, 1951 (French). MR 0051242
- G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677–694. MR 7009, DOI 10.2307/2371713
- Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105–113. MR 49882, DOI 10.1090/S0002-9939-1951-0049882-5
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Erwin Kleinfeld, Standard and accessible rings, Canadian J. Math. 8 (1956), 335–340. MR 78349, DOI 10.4153/CJM-1956-038-0
- R. D. Schafer, Representations of alternative algebras, Trans. Amer. Math. Soc. 72 (1952), 1–17. MR 45101, DOI 10.1090/S0002-9947-1952-0045101-X —, An introduction to non-associative algebras, Pure and Appl. Math., vol. 22, Academic Press, New York, 1966. MR 35 #1643.
- R. D. Schafer, Standard algebras, Pacific J. Math. 29 (1969), 203–223. MR 244332
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 57-62
- MSC: Primary 17D05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332914-X
- MathSciNet review: 0332914