Tensor products and almost periodicity
HTML articles powered by AMS MathViewer
- by Hugo D. Junghenn
- Proc. Amer. Math. Soc. 43 (1974), 99-105
- DOI: https://doi.org/10.1090/S0002-9939-1974-0365223-3
- PDF | Request permission
Abstract:
Let $E$ and $F$ be locally convex spaces and $G$ their completed $\varepsilon$-tensor product. It is shown that if $S$ and $T$ are weakly almost periodic equicontinuous semigroups of operators on $E$ and $F$ respectively, then, under mild restrictions on $E$ or $F, S \otimes T$ is a weakly almost periodic equicontinuous semigroup of operators on $G$, and the almost periodic and flight vector subspaces of $G$ are related in a natural way to the corresponding subspaces of $E$ and $F$ via the $\varepsilon$-tensor product. Furthermore, if $E$ and $F$ both decompose into a direct sum of these subspaces then so does $G$.References
- J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. MR 0223483
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217–240. MR 36455, DOI 10.1090/S0002-9947-1949-0036455-9
- Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125. MR 88674
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Konrad Jacobs, Ergodentheorie und fastperiodische Funktionen auf Halbgruppen, Math. Z. 64 (1956), 298–338 (German). MR 77092, DOI 10.1007/BF01166575 H. Junghenn, Almost periodic compactifications and applications to one-parameter semigroups, Thesis, The George Washington University, Washington, D.C., 1971.
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 99-105
- MSC: Primary 47D05; Secondary 46M05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0365223-3
- MathSciNet review: 0365223