On the classification of knots
HTML articles powered by AMS MathViewer
- by Kenneth A. Perko
- Proc. Amer. Math. Soc. 45 (1974), 262-266
- DOI: https://doi.org/10.1090/S0002-9939-1974-0353294-X
- PDF | Request permission
Abstract:
Linking numbers between branch curves of irregular covering spaces of knots are used to extend the classification of knots through ten crossings and to show that the only amphicheirals in Reidemeister’s table are the seven identified by Tait in 1884. Diagrams of the 165 prime $10$-crossing knot types are appended. (Murasugi and the author have proven them prime; Conway claims proof that the tables are complete.) Including the trivial type, there are precisely 250 prime knots with ten or fewer crossings.References
- Gerhard Burde, Darstellungen von Knotengruppen und eine Knoteninvariante, Abh. Math. Sem. Univ. Hamburg 35 (1970), 107–120 (German). MR 276956, DOI 10.1007/BF02992480
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- R. H. Fox, Metacyclic invariants of knots and links, Canadian J. Math. 22 (1970), 193–201. MR 261584, DOI 10.4153/CJM-1970-025-9 C. N. Little, Non-alternate $\pm$ knots, Trans. Roy. Soc. Edinburgh 39 (1900), 771-778, plates I, II, III.
- Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, DOI 10.1090/S0002-9947-1965-0171275-5 K. Reidemeister, Knotentheorie, Ergebnisse der Math. und ihrer Grenzgebiete, Band 1, Springer-Verlag, Berlin, 1932.
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875 P. G. Tait, The first seven orders of knottiness, Trans. Roy. Soc. Edinburgh 32 (1884), plate 44. —, Tenfold knottiness, Trans. Roy. Soc. Edinburgh 32 ( 1885), plates 80, 81.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 262-266
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0353294-X
- MathSciNet review: 0353294