Modules over semihereditary Bezout rings
HTML articles powered by AMS MathViewer
- by Thomas S. Shores
- Proc. Amer. Math. Soc. 46 (1974), 211-213
- DOI: https://doi.org/10.1090/S0002-9939-1974-0349663-4
- PDF | Request permission
Abstract:
It is shown that every commutative semihereditary Bezout ring of Krull dimension at most one is an elementary divisor ring. A consequence is that the ring of polynomials in one indeterminate over a von Neumann regular ring is an elementary divisor ring.References
- N. Bourbaki, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 1: Modules plats, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Leonard Gillman and Melvin Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362–365. MR 78979, DOI 10.1090/S0002-9947-1956-0078979-8 R. Gilmer and T. Parker, Semigroup rings as Prüferrings (preprint).
- Melvin Henriksen, Some remarks on elementary divisor rings. II, Michigan Math. J. 3 (1955/56), 159–163. MR 92772
- Irving Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464–491. MR 31470, DOI 10.1090/S0002-9947-1949-0031470-3
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- Max D. Larsen, William J. Lewis, and Thomas S. Shores, Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc. 187 (1974), 231–248. MR 335499, DOI 10.1090/S0002-9947-1974-0335499-1
- P. J. McCarthy, The ring of polynomial over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253–254. MR 316496, DOI 10.1090/S0002-9939-1973-0316496-3
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 211-213
- MSC: Primary 13F10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0349663-4
- MathSciNet review: 0349663