Modules over semihereditary Bezout rings
Author:
Thomas S. Shores
Journal:
Proc. Amer. Math. Soc. 46 (1974), 211-213
MSC:
Primary 13F10
DOI:
https://doi.org/10.1090/S0002-9939-1974-0349663-4
MathSciNet review:
0349663
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that every commutative semihereditary Bezout ring of Krull dimension at most one is an elementary divisor ring. A consequence is that the ring of polynomials in one indeterminate over a von Neumann regular ring is an elementary divisor ring.
-
N. Bourbaki, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 1: Modules plats, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI https://doi.org/10.1090/S0002-9947-1960-0120260-3
- Leonard Gillman and Melvin Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362–365. MR 78979, DOI https://doi.org/10.1090/S0002-9947-1956-0078979-8 R. Gilmer and T. Parker, Semigroup rings as Prüferrings (preprint).
- Melvin Henriksen, Some remarks on elementary divisor rings. II, Michigan Math. J. 3 (1955/56), 159–163. MR 92772
- Irving Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464–491. MR 31470, DOI https://doi.org/10.1090/S0002-9947-1949-0031470-3
- Irving Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- Max D. Larsen, William J. Lewis, and Thomas S. Shores, Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc. 187 (1974), 231–248. MR 335499, DOI https://doi.org/10.1090/S0002-9947-1974-0335499-1
- P. J. McCarthy, The ring of polynomial over a von Neumann regular ring, Proc. Amer. Math. Soc. 39 (1973), 253–254. MR 316496, DOI https://doi.org/10.1090/S0002-9939-1973-0316496-3
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F10
Retrieve articles in all journals with MSC: 13F10
Additional Information
Keywords:
Commutative von Neumann regular ring,
polynomial ring,
semihereditary ring,
Hermite ring,
Bezout ring,
elementary divisor ring
Article copyright:
© Copyright 1974
American Mathematical Society