Variation of multiparameter Brownian motion
HTML articles powered by AMS MathViewer
- by Lane Yoder PDF
- Proc. Amer. Math. Soc. 46 (1974), 302-309 Request permission
Abstract:
Lévy’s $N$-parameter Brownian motion in $d$-dimensional space is denoted by ${W^{(N,d)}}$. Using uniform partitions and a Vitali-type variation, Berman recently extended to ${W^{(N,1)}}$ a classical result of Lévy concerning the relation between ${W^{(1,1)}}$ and $2$-variation. With this variation ${W^{(N,d)}}$ has variation dimension $2N$ with probability one. An appropriate definition of weak variation is given using powers of the diameters of the images of sets which satisfy a parameter of regularity. A previous result concerning the Hausdorff dimensions of the graph and image is used to show the weak variation dimension of ${W^{(N,d)}}$ is $2N$ with probability one, extending the result for ${W^{(1,1)}}$ of Goffman and Loughlin. If unrestricted partitions of the domain are used, the weak variation dimension of a function turns out to be the same as the Hausdorff dimension of the image.References
- Simeon M. Berman, A version of the Lévy-Baxter theorem for the increments of Brownian motion of several parameters, Proc. Amer. Math. Soc. 18 (1967), 1051–1055. MR 222958, DOI 10.1090/S0002-9939-1967-0222958-7 A. S. Besicovitch and H. D. Ursell, Sets of fractional dimension. V: On dimensional members of some continuous curves, J. London Math. Soc. 12 (1937), 18-25.
- Casper Goffman and John J. Loughlin, Strong and weak $\Phi$-variation of Brownian motion, Indiana Univ. Math. J. 22 (1972/73), 135–138. MR 296227, DOI 10.1512/iumj.1972.22.22012
- Paul Lévy, La mesure de Hausdorff de la courbe du mouvement brownien, Giorn. Ist. Ital. Attuari 16 (1953), 1–37 (1954) (French). MR 64344 —, Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris, 1948, p. 265. MR 10, 551.
- S. J. Taylor, The Hausdorff $\alpha$-dimensional measure of Brownian paths in $n$-space, Proc. Cambridge Philos. Soc. 49 (1953), 31–39. MR 52719, DOI 10.1017/s0305004100028000
- S. J. Taylor, The $\alpha$-dimensional measure of the graph and set of zeros of a Brownian path, Proc. Cambridge Philos. Soc. 51 (1955), 265–274. MR 74494, DOI 10.1017/s030500410003019x
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 46 (1974), 302-309
- MSC: Primary 60J65; Secondary 60G17
- DOI: https://doi.org/10.1090/S0002-9939-1974-0418260-4
- MathSciNet review: 0418260